IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.16047.html
   My bibliography  Save this paper

Decision making with dynamic probabilistic forecasts

Author

Listed:
  • Peter Tankov
  • Laura Tinsi

Abstract

We consider a sequential decision making process, such as renewable energy trading or electrical production scheduling, whose outcome depends on the future realization of a random factor, such as a meteorological variable. We assume that the decision maker disposes of a dynamically updated probabilistic forecast (predictive distribution) of the random factor. We propose several stochastic models for the evolution of the probabilistic forecast, and show how these models may be calibrated from ensemble forecasts, commonly provided by weather centers. We then show how these stochastic models can be used to determine optimal decision making strategies depending on the forecast updates. Applications to wind energy trading are given.

Suggested Citation

  • Peter Tankov & Laura Tinsi, 2021. "Decision making with dynamic probabilistic forecasts," Papers 2106.16047, arXiv.org.
  • Handle: RePEc:arx:papers:2106.16047
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.16047
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Olivier Féron & Peter Tankov & Laura Tinsi, 2020. "Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player," Risks, MDPI, vol. 8(4), pages 1-21, December.
    3. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    4. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    5. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.
    6. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    7. repec:dau:papers:123456789/4273 is not listed on IDEAS
    8. René Aïd & P. Gruet & H. Pham, 2016. "An optimal trading problem in intraday electricity markets," Post-Print hal-01609481, HAL.
    9. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    10. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    11. Baran, Sándor, 2014. "Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 227-238.
    12. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    13. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Kuppelwieser & David Wozabal, 2023. "Intraday power trading: toward an arms race in weather forecasting?," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 57-83, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Tankov & Laura Tinsi, 2024. "Stochastic optimization with dynamic probabilistic forecasts," Annals of Operations Research, Springer, vol. 336(1), pages 711-747, May.
    2. Sema Coskun & Ralf Korn, 2025. "A mean field game model for optimal trading in the intraday electricity market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 269-299, June.
    3. Sebastian Lerch & Sándor Baran, 2017. "Similarity-based semilocal estimation of post-processing models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 29-51, January.
    4. Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
    5. René Aid & Andrea Cosso & Huyên Pham, 2022. "Equilibrium price in intraday electricity markets," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 517-554, April.
    6. Ren'e Aid & Andrea Cosso & Huy^en Pham, 2020. "Equilibrium price in intraday electricity markets," Papers 2010.09285, arXiv.org.
    7. Enzo Cogn'eville & Thomas Deschatre & Xavier Warin, 2024. "Battery valuation on electricity intraday markets with liquidity costs," Papers 2412.15959, arXiv.org.
    8. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    10. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    13. Masaaki Fujii & Akihiko Takahashi, 2022. "Equilibrium Price Formation with a Major Player and its Mean Field Limit (Forthcoming in ESAIM: Control, Optimization and Calculus of Variations)(Revised version of CARF-F-509)," CARF F-Series CARF-F-533, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. Eyal Neuman & Moritz Voß, 2023. "Trading with the crowd," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 548-617, July.
    15. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    16. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    17. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    18. Narajewski, Michał & Ziel, Florian, 2020. "Econometric modelling and forecasting of intraday electricity prices," Journal of Commodity Markets, Elsevier, vol. 19(C).
    19. Piccirilli, Marco & Schmeck, Maren Diane & Vargiolu, Tiziano, 2021. "Capturing the power options smile by an additive two-factor model for overlapping futures prices," Energy Economics, Elsevier, vol. 95(C).
    20. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.16047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.