IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519304057.html
   My bibliography  Save this article

The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices

Author

Listed:
  • Goodarzi, Shadi
  • Perera, H. Niles
  • Bunn, Derek

Abstract

This paper contributes to the general consideration of whether a policy of incentivising system operators to improve the quality and market availability of forecasts for renewable energy outputs would be beneficial. Using data from the German electricity market, we investigate the effect of wind and solar energy forecasts errors on imbalance volumes and subsequent spot electricity prices. We use ordinary least squares regression, quantile regression and autoregressive moving averages to identify these relationships using variables that have a quarter-hourly data granularity. The results show that higher wind and solar forecast errors increase the absolute values of imbalance volumes and that these can pass through into higher spot prices. We find that wind forecast errors in Germany impact spot prices more than solar forecasting errors. Policy incentives to improve the accuracy and availability of renewable energy forecasts by the system operators should therefore be encouraged.

Suggested Citation

  • Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519304057
    DOI: 10.1016/j.enpol.2019.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519304057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    2. Klessmann, Corinna & Nabe, Christian & Burges, Karsten, 2008. "Pros and cons of exposing renewables to electricity market risks--A comparison of the market integration approaches in Germany, Spain, and the UK," Energy Policy, Elsevier, vol. 36(10), pages 3646-3661, October.
    3. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    4. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
    5. Barth, Rüdiger & Weber, Christoph & Swider, Derk J., 2008. "Distribution of costs induced by the integration of RES-E power," Energy Policy, Elsevier, vol. 36(8), pages 3097-3105, August.
    6. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    7. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    10. Florian Ziel, 2015. "Forecasting Electricity Spot Prices using Lasso: On Capturing the Autoregressive Intraday Structure," Papers 1509.01966, arXiv.org, revised Jan 2016.
    11. Shanshan Hu & Gilvan C. Souza & Mark E. Ferguson & Wenbin Wang, 2015. "Capacity Investment in Renewable Energy Technology with Supply Intermittency: Data Granularity Matters!," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 480-494, October.
    12. Anderson, Dennis & Leach, Matthew, 2004. "Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen," Energy Policy, Elsevier, vol. 32(14), pages 1603-1614, September.
    13. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    14. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    15. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    16. Hagfors, Lars Ivar & Bunn, Derek & Kristoffersen, Eline & Staver, Tiril Toftdahl & Westgaard, Sjur, 2016. "Modeling the UK electricity price distributions using quantile regression," Energy, Elsevier, vol. 102(C), pages 231-243.
    17. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    18. Möller, Christoph & Rachev, Svetlozar T. & Fabozzi, Frank J., 2011. "Balancing energy strategies in electricity portfolio management," Energy Economics, Elsevier, vol. 33(1), pages 2-11, January.
    19. Francesco Lisi and Enrico Edoli, 2018. "Analyzing and Forecasting Zonal Imbalance Signs in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    20. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    21. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    22. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    23. Swinand, Gregory P. & O'Mahoney, Amy, 2015. "Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland," Renewable Energy, Elsevier, vol. 75(C), pages 468-473.
    24. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    25. Gro Klaeboe & Anders Lund Eriksrud & Stein-Erik Fleten, 2013. "Benchmarking time series based forecasting models for electricity balancing market prices," Working Papers 2013-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    26. Helen Higgs, 2009. "Modelling price and volatility inter-relationships in the Australian wholesale spot electricity markets," Discussion Papers in Economics economics:200904, Griffith University, Department of Accounting, Finance and Economics.
    27. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    28. Sebastian Just & Christoph Weber, 2015. "Strategic behavior in the German balancing energy mechanism: incentives, evidence, costs and solutions," Journal of Regulatory Economics, Springer, vol. 48(2), pages 218-243, October.
    29. René Aïd & P. Gruet & H. Pham, 2016. "An optimal trading problem in intraday electricity markets," Post-Print hal-01609481, HAL.
    30. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    31. Higgs, Helen, 2009. "Modelling price and volatility inter-relationships in the Australian wholesale spot electricity markets," Energy Economics, Elsevier, vol. 31(5), pages 748-756, September.
    32. Bueno-Lorenzo, Miriam & Moreno, M. Ángeles & Usaola, Julio, 2013. "Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case," Energy Policy, Elsevier, vol. 62(C), pages 1010-1019.
    33. Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.
    34. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    35. Owen Q. Wu & Roman Kapuscinski, 2013. "Curtailing Intermittent Generation in Electrical Systems," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 578-595, October.
    36. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    37. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    38. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Yunting & Gao, Ciwei & Tian, Hongjie & Zhang, Huiling, 2020. "Review of mid-to long-term trading mechanism for renewable electricity consumption in Ningxia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Marcel Kremer & Rüdiger Kiesel & Florentina Paraschiv, 2020. "Intraday Electricity Pricing of Night Contracts," Energies, MDPI, vol. 13(17), pages 1-14, September.
    3. Kuppelwieser, Thomas & Wozabal, David, 2021. "Liquidity costs on intraday power markets: Continuous trading versus auctions," Energy Policy, Elsevier, vol. 154(C).
    4. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    5. Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
    6. Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020. "Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts," Energies, MDPI, vol. 13(7), pages 1-16, April.
    7. Yuan Yuan & Feng Cai & Lingling Yang, 2020. "Renewable Energy Investment under Carbon Emission Regulations," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    8. Heeseung Moon & Dongsu Lee & Jeongmin Han & Yongtae Yoon & Seungwan Kim, 2021. "Impact of Imbalance Pricing on Variable Renewable Energies with Different Prediction Accuracies: A Korean Case," Energies, MDPI, vol. 14(13), pages 1-19, July.
    9. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    10. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2021. "Short-term risk management for electricity retailers under rising shares of decentralized solar generation," Working Paper Series in Production and Energy 57, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    11. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    12. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    13. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    2. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    3. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    4. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    5. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    6. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    7. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    8. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    9. Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).
    10. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    11. Sapio, Alessandro, 2019. "Greener, more integrated, and less volatile? A quantile regression analysis of Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 126(C), pages 452-469.
    12. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    13. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    14. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    15. Tryggvi Jónsson & Pierre Pinson & Henrik Madsen & Henrik Aalborg Nielsen, 2014. "Predictive Densities for Day-Ahead Electricity Prices Using Time-Adaptive Quantile Regression," Energies, MDPI, vol. 7(9), pages 1-25, August.
    16. Florian Ziel & Rafal Weron, 2016. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate models," HSC Research Reports HSC/16/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    18. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    19. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    20. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519304057. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.