IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i1d10.1007_s10479-023-05401-7.html
   My bibliography  Save this article

Forecasting carbon market volatility with big data

Author

Listed:
  • Bangzhu Zhu

    (Guangxi University
    Key Laboratory of Interdisciplinary Science of Statistics and Management, Education Department of Guangxi)

  • Chunzhuo Wan

    (Guilin University of Electronic Technology)

  • Ping Wang

    (Jinan University)

  • Julien Chevallier

    (4IPAG Lab, IPAG Business School
    LED, University of Paris 8)

Abstract

This paper proposes an ensemble forecasting model for carbon market volatility with structural factors and non-structural Baidu search index. Firstly, wavelet analysis is introduced into carbon price denoising for obtaining carbon market volatility. Secondly, carbon market volatility forecasting is converted into a multi-class forecasting problem. Thirdly, synthetic minority over sampling technique tomek links (SMOTETomek) is used to address the class imbalance problem. Fourthly, extreme gradient boosting (XGBoost) is used for carbon market volatility forecasting, and genetic algorithm (GA) is employed into synchronously optimize all parameters of XGBoost. Taking Guangdong and Hubei carbon markets as samples, the proposed model has higher overall forecasting performance and higher minority class forecasting performance when compared with other popular prediction models. The sensitivity analysis verifies that the proposed model is robust.

Suggested Citation

  • Bangzhu Zhu & Chunzhuo Wan & Ping Wang & Julien Chevallier, 2025. "Forecasting carbon market volatility with big data," Annals of Operations Research, Springer, vol. 348(1), pages 317-343, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05401-7
    DOI: 10.1007/s10479-023-05401-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05401-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05401-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Post-Print halshs-04250258, HAL.
    2. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Post-Print halshs-04250287, HAL.
    3. Bao-jun Tang & Pi-qin Gong & Cheng Shen, 2017. "Factors of carbon price volatility in a comparative analysis of the EUA and sCER," Annals of Operations Research, Springer, vol. 255(1), pages 157-168, August.
    4. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    5. Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong & Sousa, Ricardo M., 2015. "An empirical analysis of energy cost pass-through to CO2 emission prices," Energy Economics, Elsevier, vol. 49(C), pages 149-156.
    6. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    7. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    8. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    9. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    10. Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
    11. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
    12. Zhang, Wei & Zhou, Zhong-Qiang & Xiong, Xiong, 2019. "Behavioral heterogeneity and excess stock price volatility in China," Finance Research Letters, Elsevier, vol. 28(C), pages 348-354.
    13. repec:dau:papers:123456789/6791 is not listed on IDEAS
    14. Jiao, Lei & Liao, Yin & Zhou, Qing, 2018. "Predicting carbon market risk using information from macroeconomic fundamentals," Energy Economics, Elsevier, vol. 73(C), pages 212-227.
    15. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    16. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2021. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Post-Print hal-03331805, HAL.
    17. Yu-Hong Liu & Syuan-Rong Dai & Fu-Min Chang & Yih-Bey Lin & Nicholas Rueilin Lee, 2020. "Does the Investor Sentiment Affect the Stock Returns in Taiwan’s Stock Market under Different Market States?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(5), pages 1-3.
    18. repec:dau:papers:123456789/4210 is not listed on IDEAS
    19. Gail Blattenberger & Richard Fowles, 2017. "Treed Avalanche Forecasting: Mitigating Avalanche Danger Utilizing Bayesian Additive Regression Trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 165-180, March.
    20. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Post-Print halshs-04250221, HAL.
    21. Afkhami, Mohamad & Cormack, Lindsey & Ghoddusi, Hamed, 2017. "Google search keywords that best predict energy price volatility," Energy Economics, Elsevier, vol. 67(C), pages 17-27.
    22. Su, Chi-Wei & Li, Zheng-Zheng & Chang, Hsu-Ling & Lobonţ, Oana-Ramona, 2017. "When Will Occur the Crude Oil Bubbles?," Energy Policy, Elsevier, vol. 102(C), pages 1-6.
    23. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    24. Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
    25. Hamdi, Besma & Aloui, Mouna & Alqahtani, Faisal & Tiwari, Aviral, 2019. "Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and Granger-causality analysis," Energy Economics, Elsevier, vol. 80(C), pages 536-552.
    26. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
    27. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    28. Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    2. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    3. Liu, Shuihan & Li, Mingchen & Yang, Kun & Wei, Yunjie & Wang, Shouyang, 2025. "From forecasting to trading: A multimodal-data-driven approach to reversing carbon market losses," Energy Economics, Elsevier, vol. 144(C).
    4. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
    5. Yaqi Wu & Chen Zhang & Po Yun & Dandan Zhu & Wei Cao & Zulfiqar Ali Wagan, 2021. "Time–frequency analysis of the interaction mechanism between European carbon and crude oil markets," Energy & Environment, , vol. 32(7), pages 1331-1357, November.
    6. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    7. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    8. Yang, Kun & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach," Energy Economics, Elsevier, vol. 139(C).
    9. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    10. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    11. Yang, Cai & Zhang, Hongwei & Weng, Futian, 2024. "Effects of COVID-19 vaccination programs on EU carbon price forecasts: Evidence from explainable machine learning," International Review of Financial Analysis, Elsevier, vol. 91(C).
    12. Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    13. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    14. Julien Chevallier & Stéphane Goutte, 2017. "Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of $$\hbox {CO}_2$$ CO 2 and fuel-switching," Annals of Operations Research, Springer, vol. 255(1), pages 169-197, August.
    15. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    16. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
    17. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    18. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    19. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    20. Bangzhu Zhu & Jingyi Zhang & Chunzhuo Wan & Julien Chevallier & Ping Wang, 2023. "An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 741-755, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05401-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.