IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211709.html
   My bibliography  Save this article

Modeling financial interval time series

Author

Listed:
  • Liang-Ching Lin
  • Li-Hsien Sun

Abstract

In financial economics, a large number of models are developed based on the daily closing price. When using only the daily closing price to model the time series, we may discard valuable intra-daily information, such as maximum and minimum prices. In this study, we propose an interval time series model, including the daily maximum, minimum, and closing prices, and then apply the proposed model to forecast the entire interval. The likelihood function and the corresponding maximum likelihood estimates (MLEs) are obtained by stochastic differential equation and the Girsanov theorem. To capture the heteroscedasticity of volatility, we consider a stochastic volatility model. The efficiency of the proposed estimators is illustrated by a simulation study. Finally, based on real data for S&P 500 index, the proposed method outperforms several alternatives in terms of the accurate forecast.

Suggested Citation

  • Liang-Ching Lin & Li-Hsien Sun, 2019. "Modeling financial interval time series," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0211709
    DOI: 10.1371/journal.pone.0211709
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211709
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211709&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    3. Choi, ByoungSeon & Roh, JeongHo, 2013. "On the trivariate joint distribution of Brownian motion and its maximum and minimum," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1046-1053.
    4. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    5. Gloria González-Rivera & Tae-Hwy Lee & Santosh Mishra, 2008. "Jumps in cross-sectional rank and expected returns: a mixture model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 585-606.
    6. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
    7. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    8. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
    9. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    10. Akahori, Jiro & Song, Xiaoming & Wang, Tai-Ho, 2019. "Bridge representation and modal-path approximation," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 174-204.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    2. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    3. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    4. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "Emerging versus developed volatility indices. The comparison of VIW20 and VIX indices," Working Papers 2009-11, Faculty of Economic Sciences, University of Warsaw.
    5. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    6. Suk Joon Byun & Dong Woo Rhee & Sol Kim, 2011. "Intraday volatility forecasting from implied volatility," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 7(1), pages 83-100, February.
    7. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    8. Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
    9. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    10. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    11. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    14. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    15. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    16. Kolkiewicz, A. W. & Tan, K. S., 2006. "Unit-Linked Life Insurance Contracts with Lapse Rates Dependent on Economic Factors," Annals of Actuarial Science, Cambridge University Press, vol. 1(1), pages 49-78, March.
    17. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    18. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    19. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    20. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.