IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns

  • Paulo M.M. Rodrigues
  • Nazarii Salish

Over recent years several methods to deal with high-frequency data (economic, financial and other) have been proposed in the literature. An interesting example is for instance interval valued time series described by the temporal evolution of high and low prices of an asset. In this paper a new class of threshold models capable of capturing asymmetric e¤ects in interval-valued data is introduced as well as new forecast loss functions and descriptive statistics of the forecast quality proposed. Least squares estimates of the threshold parameter and the regression slopes are obtained; and forecasts based on the proposed threshold model computed. A new forecast procedure based on the combination of this model with the k nearest neighbors method is introduced. To illustrate this approach, we report an application to a weekly sample of S&P500 index returns. The results obtained are encouraging and compare very favorably to available procedures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bportugal.pt/en-US/BdP%20Publications%20Research/wp201128.pdf
Download Restriction: no

Paper provided by Banco de Portugal, Economics and Research Department in its series Working Papers with number w201128.

as
in new window

Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:ptu:wpaper:w201128
Contact details of provider: Postal: R. do Ouro, 27, 1100 LISBOA
Phone: 21 321 32 00
Fax: 21 346 48 43
Web page: http://www.bportugal.pt
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  2. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-41, March-Apr.
  3. Michael Dueker & Martin Sola & Fabio Spagnolo, 2007. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Discussion Papers 5_2007, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
  4. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
  5. Yin-wong Cheung, 2006. "An Empirical Model of Daily Highs and Lows," Working Papers 072006, Hong Kong Institute for Monetary Research.
  6. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  7. Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
  8. Tobias, Justin & Zellner, Arnold, 2000. "A Note on Aggregation, Disaggregation and Forecasting Performance," Staff General Research Papers 12024, Iowa State University, Department of Economics.
  9. De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
  10. Philip Rothman, . "Forecasting Asymmetric Unemployment Rates," Working Papers 9618, East Carolina University, Department of Economics.
  11. Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
  12. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
  13. Fiess, Norbert M & MacDonald, Ronald, 2002. "Towards the fundamentals of technical analysis: analysing the information content of High, Low and Close prices," Economic Modelling, Elsevier, vol. 19(3), pages 353-374, May.
  14. Makridakis, Spyros, 1989. "Why combining works?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 601-603.
  15. Simon M. Potter, 1993. "A Nonlinear Approach to U.S. GNP," UCLA Economics Working Papers 693, UCLA Department of Economics.
  16. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
  17. García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
  18. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-82, June.
  19. G�ran Therborn & K.C. Ho, 2009. "Introduction," City, Taylor & Francis Journals, vol. 13(1), pages 53-62, March.
  20. Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
  21. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
  22. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
  23. Henry, Olan T & Olekalns, Nilss & Summers, Peter M, 2001. "Exchange Rate Instability: A Threshold Autoregressive Approach," The Economic Record, The Economic Society of Australia, vol. 77(237), pages 160-66, June.
  24. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
  25. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
  26. J. Barkley Rosser, 2009. "Introduction," Chapters, in: Handbook of Research on Complexity, chapter 1 Edward Elgar.
  27. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w201128. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEE-NTDD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.