IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Bootstrap prediction intervals for SETAR models

  • Li, Jing
Registered author(s):

    This paper considers four methods for obtaining bootstrap prediction intervals (BPIs) for the self-exciting threshold autoregressive (SETAR) model. Method 1 ignores the sampling variability of the threshold parameter estimator. Method 2 corrects the finite sample biases of the autoregressive coefficient estimators before constructing BPIs. Method 3 takes into account the sampling variability of both the autoregressive coefficient estimators and the threshold parameter estimator. Method 4 resamples the residuals in each regime separately. A Monte Carlo experiment shows that (1) accounting for the sampling variability of the threshold parameter estimator is necessary, despite its super-consistency; (2) correcting the small-sample biases of the autoregressive parameter estimators improves the small-sample properties of bootstrap prediction intervals under certain circumstances; and (3) the two-sample bootstrap can improve the long-term forecasts when the error terms are regime-dependent.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V92-4YX0BGH-1/2/33e4dc855484c3864df35efa3867b928
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 27 (2011)
    Issue (Month): 2 (April)
    Pages: 320-332

    as
    in new window

    Handle: RePEc:eee:intfor:v:27:y::i:2:p:320-332
    Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
    2. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    3. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
    4. Kim, Jae H, 2001. "Bootstrap-after-Bootstrap Prediction Intervals for Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 117-28, January.
    5. Enders Walter & Falk Barry L & Siklos Pierre, 2007. "A Threshold Model of Real U.S. GDP and the Problem of Constructing Confidence Intervals in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(3), pages 1-28, September.
    6. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    7. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
    8. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    9. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-35, April.
    10. Bruce E. Hansen, 1996. "Sample Splitting and Threshold Estimation," Boston College Working Papers in Economics 319., Boston College Department of Economics, revised 12 May 1998.
    11. De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
    12. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
    13. Kim, Jae H, 2002. "Bootstrap Prediction Intervals for Autoregressive Models of Unknown or Infinite Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(4), pages 265-80, July.
    14. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-30, March.
    15. Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
    16. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    17. Maekawa, Koichi, 1987. "Finite Sample Properties of Several Predictors From an Autoregressive Model," Econometric Theory, Cambridge University Press, vol. 3(03), pages 359-370, June.
    18. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
    19. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    20. Gonzalo, Jesus & Wolf, Michael, 2005. "Subsampling inference in threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 127(2), pages 201-224, August.
    21. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-44, April.
    22. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:320-332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.