IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Bootstrap prediction intervals for SETAR models

  • Li, Jing
Registered author(s):

    This paper considers four methods for obtaining bootstrap prediction intervals (BPIs) for the self-exciting threshold autoregressive (SETAR) model. Method 1 ignores the sampling variability of the threshold parameter estimator. Method 2 corrects the finite sample biases of the autoregressive coefficient estimators before constructing BPIs. Method 3 takes into account the sampling variability of both the autoregressive coefficient estimators and the threshold parameter estimator. Method 4 resamples the residuals in each regime separately. A Monte Carlo experiment shows that (1) accounting for the sampling variability of the threshold parameter estimator is necessary, despite its super-consistency; (2) correcting the small-sample biases of the autoregressive parameter estimators improves the small-sample properties of bootstrap prediction intervals under certain circumstances; and (3) the two-sample bootstrap can improve the long-term forecasts when the error terms are regime-dependent.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010000385
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 27 (2011)
    Issue (Month): 2 ()
    Pages: 320-332

    as
    in new window

    Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:320-332
    Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:320-332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.