IDEAS home Printed from https://ideas.repec.org/a/ijf/ijfiec/v12y2007i1p1-20.html
   My bibliography  Save this article

An empirical model of daily highs and lows

Author

Listed:
  • Yin-Wong Cheung

Abstract

We construct an empirical model for daily highs and daily lows of US stock indexes based on the intuition that highs and lows do not drift apart over time. Our empirical results show that daily highs and lows of three main US stock price indexes are cointegrated. Data on openings, closings, and trading volume are found to offer incremental explanatory power for variations in highs and lows within the VECM framework. With all these variables, the augmented VECM models explain 40-50% of variations in daily highs and lows. The generalized impulse response analysis shows that the responses of daily highs and daily lows to the shocks depend on whether data on openings, closings, and trading volume are included in the analysis. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Yin-Wong Cheung, 2007. "An empirical model of daily highs and lows," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
  • Handle: RePEc:ijf:ijfiec:v:12:y:2007:i:1:p:1-20
    DOI: 10.1002/ijfe.303
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ijfe.303
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    3. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    4. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    5. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    6. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of a Modified Dickey-Fuller Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(3), pages 411-419, August.
    7. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    8. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    9. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    10. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    11. Jeffrey A. Frankel, 1993. "On Exchange Rates," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061546, April.
    12. Kunitomo, Naoto, 1992. "Improving the Parkinson Method of Estimating Security Price Volatilities," The Journal of Business, University of Chicago Press, vol. 65(2), pages 295-302, April.
    13. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    14. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    15. Cheung, Yin-Wong & Chinn, Menzie David, 2001. "Currency traders and exchange rate dynamics: a survey of the US market," Journal of International Money and Finance, Elsevier, vol. 20(4), pages 439-471, August.
    16. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    17. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.
    18. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    19. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    20. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    21. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    22. Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
    23. Cheung, Yin-Wong & Wong, Clement Yuk-Pang, 2000. "A survey of market practitioners' views on exchange rate dynamics," Journal of International Economics, Elsevier, vol. 51(2), pages 401-419, August.
    24. Mok, Debby M Y & Lam, K & Li, W, 2000. "Using Daily High/Low Time to Test for Intraday Random Walk in Two Index Futures Markets," Review of Quantitative Finance and Accounting, Springer, vol. 14(4), pages 381-397, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Kudryavtsev, 2012. "Short-Term Stock Price Reversals May Be Reversed," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 5(3), pages 129-146, December.
    2. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    3. Angela He & Alan Wan, 2009. "Predicting daily highs and lows of exchange rates: a cointegration analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1191-1204.
    4. Baruník, Jozef & Dvořáková, Sylvie, 2015. "An empirical model of fractionally cointegrated daily high and low stock market prices," Economic Modelling, Elsevier, vol. 45(C), pages 193-206.
    5. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    6. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    7. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    8. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
    9. Awartani, Basel & Maghyereh, Aktham Issa, 2013. "Dynamic spillovers between oil and stock markets in the Gulf Cooperation Council Countries," Energy Economics, Elsevier, vol. 36(C), pages 28-42.
    10. Javier Arroyo & Rosa Espínola & Carlos Maté, 2011. "Different Approaches to Forecast Interval Time Series: A Comparison in Finance," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 169-191, February.
    11. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    12. Ni, Yensen & Liao, Yi-Ching & Huang, Paoyu, 2015. "MA trading rules, herding behaviors, and stock market overreaction," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 253-265.
    13. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
    14. Wenyang Huang & Huiwen Wang & Shanshan Wang, 2021. "Dimension reduction of open-high-low-close data in candlestick chart based on pseudo-PCA," Papers 2103.16908, arXiv.org.
    15. García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
    16. Cheung, Yan-Leung & Cheung, Yin-Wong & He, Angela W.W. & Wan, Alan T.K., 2010. "A trading strategy based on Callable Bull/Bear Contracts," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 186-198, April.
    17. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    18. Huang, Wenyang & Wang, Huiwen & Wei, Yigang, 2023. "Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data," International Review of Financial Analysis, Elsevier, vol. 90(C).
    19. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    21. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    22. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    23. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    24. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
    25. Huiwen Wang & Wenyang Huang & Shanshan Wang, 2021. "Forecasting open-high-low-close data contained in candlestick chart," Papers 2104.00581, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    2. Lakshmi Padmakumari & S. Maheswaran, 2018. "Covariance estimation using random permutations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    3. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    4. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    5. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    6. Angela He & Alan Wan, 2009. "Predicting daily highs and lows of exchange rates: a cointegration analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1191-1204.
    7. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    8. Michael KUEHL, 2008. "Strong Comovements of Exchange Rates: Theoretical and Empirical Cases when Currencies Become the Same Asset," EcoMod2008 23800071, EcoMod.
    9. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    10. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    11. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    12. Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
    13. Isuru Ratnayake & V. A. Samaranayake, 2022. "Threshold Asymmetric Conditional Autoregressive Range (TACARR) Model," Papers 2202.03351, arXiv.org, revised Mar 2022.
    14. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
    15. repec:wyi:journl:002128 is not listed on IDEAS
    16. Aris Kartsaklas, 2018. "Trader Type Effects On The Volatility‐Volume Relationship Evidence From The Kospi 200 Index Futures Market," Bulletin of Economic Research, Wiley Blackwell, vol. 70(3), pages 226-250, July.
    17. Sin, Chor-Yiu (CY), 2013. "Using CARRX models to study factors affecting the volatilities of Asian equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 552-564.
    18. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    19. Yin-Wong Cheung, 2000. "Hong Kong Output Dynamics: An Empirical Analysis," Working Papers 112000, Hong Kong Institute for Monetary Research.
    20. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    21. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijf:ijfiec:v:12:y:2007:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.