IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8211-d423999.html
   My bibliography  Save this article

Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0

Author

Listed:
  • Zeki Murat Çınar

    (Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin, Turkey)

  • Abubakar Abdussalam Nuhu

    (Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin, Turkey)

  • Qasim Zeeshan

    (Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin, Turkey)

  • Orhan Korhan

    (Department of Industrial Engineering, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin, Turkey)

  • Mohammed Asmael

    (Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin, Turkey)

  • Babak Safaei

    (Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin, Turkey)

Abstract

Recently, with the emergence of Industry 4.0 (I4.0), smart systems, machine learning (ML) within artificial intelligence (AI), predictive maintenance (PdM) approaches have been extensively applied in industries for handling the health status of industrial equipment. Due to digital transformation towards I4.0, information techniques, computerized control, and communication networks, it is possible to collect massive amounts of operational and processes conditions data generated form several pieces of equipment and harvest data for making an automated fault detection and diagnosis with the aim to minimize downtime and increase utilization rate of the components and increase their remaining useful lives. PdM is inevitable for sustainable smart manufacturing in I4.0. Machine learning (ML) techniques have emerged as a promising tool in PdM applications for smart manufacturing in I4.0, thus it has increased attraction of authors during recent years. This paper aims to provide a comprehensive review of the recent advancements of ML techniques widely applied to PdM for smart manufacturing in I4.0 by classifying the research according to the ML algorithms, ML category, machinery, and equipment used, device used in data acquisition, classification of data, size and type, and highlight the key contributions of the researchers, and thus offers guidelines and foundation for further research.

Suggested Citation

  • Zeki Murat Çınar & Abubakar Abdussalam Nuhu & Qasim Zeeshan & Orhan Korhan & Mohammed Asmael & Babak Safaei, 2020. "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-42, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8211-:d:423999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro J. Rivera Torres & Eileen I. Serrano Mercado & Orestes Llanes Santiago & Luis Anido Rifón, 2018. "Modeling preventive maintenance of manufacturing processes with probabilistic Boolean networks with interventions," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1941-1952, December.
    2. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    3. Chaoqun Duan & Chao Deng & Bingran Wang, 2018. "Optimal maintenance policy incorporating system level and unit level for mechanical systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(5), pages 1074-1087, April.
    4. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    5. Ahmad, Wasim & Khan, Sheraz Ali & Islam, M M Manjurul & Kim, Jong-Myon, 2019. "A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 67-76.
    6. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Miao, Mengqi & Yu, Jianbo & Zhao, Zhihong, 2022. "A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    4. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Zhang, Huixian & Wei, Xiukun & Liu, Zhiqiang & Ding, Yaning & Guan, Qingluan, 2025. "Condition-based maintenance for multi-state systems with prognostic and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    6. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Mahdi Mokhtarzadeh & Jorge Rodríguez-Echeverría & Ivana Semanjski & Sidharta Gautama, 2025. "Hybrid intelligence failure analysis for industry 4.0: a literature review and future prospective," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2309-2334, April.
    8. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Liu, Shaoyang & Wei, Jingfeng & Li, Guofa & He, Jialong & Zhang, Baodong & Liu, Bo, 2025. "A two-stage remaining useful life prediction method based on adaptive feature metric and graph spatiotemporal attention rule learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    10. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. A., Faizanbasha & Rizwan, U., 2025. "Deep learning-stochastic ensemble for RUL prediction and predictive maintenance with dynamic mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    12. Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
    13. Mohammad Hossein Ronaghi, 2023. "The influence of artificial intelligence adoption on circular economy practices in manufacturing industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14355-14380, December.
    14. Ferreira Neto, Waldomiro Alves & Virgínio Cavalcante, Cristiano Alexandre & Do, Phuc, 2024. "Deep reinforcement learning for maintenance optimization of a scrap-based steel production line," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Liu, Junqiang & Yu, Zhuoqian & Zuo, Hongfu & Fu, Rongchunxue & Feng, Xiaonan, 2022. "Multi-stage residual life prediction of aero-engine based on real-time clustering and combined prediction model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Dehghan Shoorkand, Hassan & Nourelfath, Mustapha & Hajji, Adnène, 2024. "A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Gunckel, Pablo Viveros & Lobos, Giovanni & Rodríguez, Fredy Kristjanpoller & Bustos, Rodrigo Mena & Godoy, David, 2025. "Methodology proposal for the development of failure prediction models applied to conveyor belts of mining material using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    19. Hesabi, Hadis & Nourelfath, Mustapha & Hajji, Adnène, 2022. "A deep learning predictive model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8211-:d:423999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.