IDEAS home Printed from https://ideas.repec.org/r/gam/jsusta/v12y2020i19p8211-d423999.html
   My bibliography  Save this item

Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Devika Kannan & Parvaneh Gholipour & Chunguang Bai, 2023. "Smart manufacturing as a strategic tool to mitigate sustainable manufacturing challenges: a case approach," Annals of Operations Research, Springer, vol. 331(1), pages 543-579, December.
  2. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
  3. Krzysztof Lalik & Filip Wątorek, 2021. "Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles," Energies, MDPI, vol. 14(22), pages 1-18, November.
  4. Bhaskar Roy & Debabrata Bera & Somya Nigam & S. K. Upadhyay, 2022. "A study of turbine failure pattern: a model optimization using machine learning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1761-1770, August.
  5. Goran Otić & Oliver Momčilović & Ljiljana Radovanović & Goran Jovanov & Dragica Radosav & Jasmina Pekez, 2021. "Mathematical Analysis of Criteria for Maintenance of Technical Systems in the Function of Achieving Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
  6. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
  7. Zhijuan Zong & Yu Guan, 2025. "AI-Driven Intelligent Data Analytics and Predictive Analysis in Industry 4.0: Transforming Knowledge, Innovation, and Efficiency," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 864-903, March.
  8. Mengze Zheng & Te Li & Jing Ye, 2025. "The Confluence of AI and Big Data Analytics in Industry 4.0: Fostering Sustainable Strategic Development," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 5479-5515, March.
  9. Francesco Polese & Carmen Gallucci & Luca Carrubbo & Rosalia Santulli, 2021. "Predictive Maintenance as a Driver for Corporate Sustainability: Evidence from a Public-Private Co-Financed R&D Project," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
  10. Valentina De Simone & Valentina Di Pasquale & Maria Elena Nenni & Salvatore Miranda, 2023. "Sustainable Production Planning and Control in Manufacturing Contexts: A Bibliometric Review," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
  11. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
  12. Moamin A. Mahmoud & Naziffa Raha Md Nasir & Mathuri Gurunathan & Preveena Raj & Salama A. Mostafa, 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review," Energies, MDPI, vol. 14(16), pages 1-27, August.
  13. Bence Márk Szeszák & István Gergely Kerékjártó & László Soltész & Péter Galambos, 2025. "Industrial Revolutions and Automation: Tracing Economic and Social Transformations of Manufacturing," Societies, MDPI, vol. 15(4), pages 1-31, March.
  14. Ioannis Mallidis & Volha Yakavenka & Anastasios Konstantinidis & Nikolaos Sariannidis, 2021. "A Goal Programming-Based Methodology for Machine Learning Model Selection Decisions: A Predictive Maintenance Application," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
  15. André Marie Mbakop & Joseph Voufo & Florent Biyeme & Jean Raymond Lucien Meva’a, 2022. "Moving to a Flexible Shop Floor by Analyzing the Information Flow Coming from Levels of Decision on the Shop Floor of Developing Countries Using Artificial Neural Network: Cameroon, Case Study," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 255-270, June.
  16. Dayo-Olupona, Oluwatobi & Genc, Bekir & Celik, Turgay & Bada, Samson, 2023. "Adoptable approaches to predictive maintenance in mining industry: An overview," Resources Policy, Elsevier, vol. 86(PA).
  17. Marek Nagy & Marcel Figura & Katarina Valaskova & George Lăzăroiu, 2025. "Predictive Maintenance Algorithms, Artificial Intelligence Digital Twin Technologies, and Internet of Robotic Things in Big Data-Driven Industry 4.0 Manufacturing Systems," Mathematics, MDPI, vol. 13(6), pages 1-28, March.
  18. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  19. Shiza Mushtaq & M. M. Manjurul Islam & Muhammad Sohaib, 2021. "Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review," Energies, MDPI, vol. 14(16), pages 1-24, August.
  20. Li-Lun & Liu & Yao-Jen & Su, 2022. "Digital Transformation and Strategic Analysis of Human Resource Value," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
  21. Nathaphon Boonnam & Tanatpong Udomchaipitak & Supattra Puttinaovarat & Thanapong Chaichana & Veera Boonjing & Jirapond Muangprathub, 2022. "Coral Reef Bleaching under Climate Change: Prediction Modeling and Machine Learning," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
  22. Saud Altaf & Shafiq Ahmad & Mazen Zaindin & Shamsul Huda & Sofia Iqbal & Muhammad Waseem Soomro, 2022. "Multiple Industrial Induction Motors Fault Diagnosis Model within Powerline System Based on Wireless Sensor Network," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
  23. Henry Ekwaro-Osire & Dennis Bode & Klaus-Dieter Thoben & Jan-Hendrik Ohlendorf, 2022. "Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
  24. Witold Torbacki, 2025. "Towards Sustainable Industry 4.0: An MCDA-Based Assessment Framework for Manufacturing and Logistics," Sustainability, MDPI, vol. 17(11), pages 1-28, June.
  25. Olcay Özge Ersöz & Ali Fırat İnal & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2022. "A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
  26. Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
  27. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
  28. Zeki Murat Çınar & Qasim Zeeshan & Orhan Korhan, 2021. "A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study," Sustainability, MDPI, vol. 13(12), pages 1-32, June.
  29. Bożena Zwolińska & Jakub Wiercioch, 2022. "Selection of Maintenance Strategies for Machines in a Series-Parallel System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
  30. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
  31. Ju-Woong Yun & So-Won Choi & Eul-Bum Lee, 2025. "Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders," Energies, MDPI, vol. 18(9), pages 1-40, April.
  32. Marios Karagiovanidis & Xanthoula Eirini Pantazi & Dimitrios Papamichail & Vassilios Fragos, 2023. "Early Detection of Cavitation in Centrifugal Pumps Using Low-Cost Vibration and Sound Sensors," Agriculture, MDPI, vol. 13(8), pages 1-26, August.
  33. Abdallah Moubayed & Abdallah Shami & Anwer Al-Dulaimi, 2022. "On End-to-End Intelligent Automation of 6G Networks," Future Internet, MDPI, vol. 14(6), pages 1-28, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.