Fault diagnosis and self-healing for smart manufacturing: a review
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02165-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
- Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
- Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
- Pisano, Alessandro & Usai, Elio, 2011. "Sliding mode control: A survey with applications in math," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(5), pages 954-979.
- Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
- Zeki Murat Çınar & Abubakar Abdussalam Nuhu & Qasim Zeeshan & Orhan Korhan & Mohammed Asmael & Babak Safaei, 2020. "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-42, October.
- Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
- Mohammad Poursaeidi & O. Kundakcioglu, 2014. "Robust support vector machines for multiple instance learning," Annals of Operations Research, Springer, vol. 216(1), pages 205-227, May.
- Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
- Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
- Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
- Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
- Saeed, Umer & Jan, Sana Ullah & Lee, Young-Doo & Koo, Insoo, 2021. "Fault diagnosis based on extremely randomized trees in wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Xin Zhang & Haifeng Wang & Bo Wu & Quan Zhou & Youmin Hu, 2023. "A novel data-driven method based on sample reliability assessment and improved CNN for machinery fault diagnosis with non-ideal data," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2449-2462, June.
- Behrooz Safarinejadian & Parisa Ghane & Hossein Monirvaghefi, 2015. "Fault detection in non-linear systems based on type-2 fuzzy logic," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 394-404, February.
- Mustufa Haider Abidi & Muneer Khan Mohammed & Hisham Alkhalefah, 2022. "Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing," Sustainability, MDPI, vol. 14(6), pages 1-27, March.
- Carla Gonçalves Machado & Mats Peter Winroth & Elias Hans Dener Ribeiro da Silva, 2020. "Sustainable manufacturing in Industry 4.0: an emerging research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1462-1484, March.
- Varaha Satya Bharath Kurukuru & Frede Blaabjerg & Mohammed Ali Khan & Ahteshamul Haque, 2020. "A Novel Fault Classification Approach for Photovoltaic Systems," Energies, MDPI, vol. 13(2), pages 1-17, January.
- Brkovic, Aleksandar & Gajic, Dragoljub & Gligorijevic, Jovan & Savic-Gajic, Ivana & Georgieva, Olga & Di Gennaro, Stefano, 2017. "Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery," Energy, Elsevier, vol. 136(C), pages 63-71.
- Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Devika Kannan & Parvaneh Gholipour & Chunguang Bai, 2023. "Smart manufacturing as a strategic tool to mitigate sustainable manufacturing challenges: a case approach," Annals of Operations Research, Springer, vol. 331(1), pages 543-579, December.
- Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
- Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
- Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
- Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
- Wenxin Yu & Shoudao Huang & Weihong Xiao, 2018. "Fault Diagnosis Based on an Approach Combining a Spectrogram and a Convolutional Neural Network with Application to a Wind Turbine System," Energies, MDPI, vol. 11(10), pages 1-11, September.
- Xiao Zhang & Weiguo Huang & Rui Wang & Jun Wang & Changqing Shen, 2025. "Dual prototypical contrastive network: a novel self-supervised method for cross-domain few-shot fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 475-490, January.
- M. Tanveer & T. Rajani & R. Rastogi & Y. H. Shao & M. A. Ganaie, 2024. "Comprehensive review on twin support vector machines," Annals of Operations Research, Springer, vol. 339(3), pages 1223-1268, August.
- Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Nejad Alagha & Anis Salwa Mohd Khairuddin & Zineddine N. Haitaamar & Obada Al-Khatib & Jeevan Kanesan, 2025. "Artificial Intelligence in Wind Turbine Fault Detection and Diagnosis: Advances and Perspectives," Energies, MDPI, vol. 18(7), pages 1-23, March.
- Piccarozzi, Michela & Silvestri, Cecilia & Aquilani, Barbara & Silvestri, Luca, 2022. "Is this a new story of the ‘Two Giants’? A systematic literature review of the relationship between industry 4.0, sustainability and its pillars," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
- Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- He, Deqiang & Liu, Chenyu & Jin, Zhenzhen & Ma, Rui & Chen, Yanjun & Shan, Sheng, 2022. "Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning," Energy, Elsevier, vol. 239(PB).
- Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
- Jaroslav Vrchota & Martin Pech & Ladislav Rolínek & Jiří Bednář, 2020. "Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review," Sustainability, MDPI, vol. 12(15), pages 1-47, July.
- Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
- Yingjin Song & Ruiyi Li & Guanyi Chen & Beibei Yan & Lei Zhong & Yuxin Wang & Yihang Li & Jinlei Li & Yingxiu Zhang, 2021. "Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
- Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
More about this item
Keywords
Smart manufacturing; Fault diagnosis; Fault detection; Self-healing; Fault-tolerant control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02165-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.