IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i4d10.1007_s10845-020-01600-2.html
   My bibliography  Save this article

Bearing fault diagnosis base on multi-scale CNN and LSTM model

Author

Listed:
  • Xiaohan Chen

    (Beijing University of Chemical Technology)

  • Beike Zhang

    (Beijing University of Chemical Technology)

  • Dong Gao

    (Beijing University of Chemical Technology)

Abstract

Intelligent fault diagnosis methods based on signal analysis have been widely used for bearing fault diagnosis. These methods use a pre-determined transformation (such as empirical mode decomposition, fast Fourier transform, discrete wavelet transform) to convert time-series signals into frequency domain signals, the performance of dignostic system is significantly rely on the extracted features. However, extracting signal characteristic is fairly time consuming and depends on specialized signal processing knowledge. Although some studies have developed highly accurate algorithms, the diagnostic results rely heavily on large data sets and unreliable human analysis. This study proposes an automatic feature learning neural network that utilizes raw vibration signals as inputs, and uses two convolutional neural networks with different kernel sizes to automatically extract different frequency signal characteristics from raw data. Then long short-term memory was used to identify the fault type according to learned features. The data is down-sampled before inputting into the network, greatly reducing the number of parameters. The experiment shows that the proposed method can not only achieve 98.46% average accuracy, exceeding some state-of-the-art intelligent algorithms based on prior knowledge and having better performance in noisy environments.

Suggested Citation

  • Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01600-2
    DOI: 10.1007/s10845-020-01600-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01600-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01600-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenxi Wu & Tefang Chen & Rong Jiang & Liwei Ning & Zheng Jiang, 2017. "A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1847-1858, December.
    2. Adrián Rodríguez Ramos & José M. Bernal de Lázaro & Alberto Prieto-Moreno & Antônio José Silva Neto & Orestes Llanes-Santiago, 2019. "An approach to robust fault diagnosis in mechanical systems using computational intelligence," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1601-1615, April.
    3. Cong Wang & Meng Gan & Chang’an Zhu, 2018. "Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 937-951, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    2. Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
    3. Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
    4. Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
    5. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    2. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    3. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    4. Xuejun Zhao & Yong Qin & Changbo He & Limin Jia, 2022. "Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 185-201, January.
    5. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    6. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.
    7. Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
    8. Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
    9. Xiaoyin Nie & Gang Xie, 2021. "A novel normalized recurrent neural network for fault diagnosis with noisy labels," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1271-1288, June.
    10. Guoping An & Qingbin Tong & Yanan Zhang & Ruifang Liu & Weili Li & Junci Cao & Yuyi Lin, 2021. "An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing," Energies, MDPI, vol. 14(4), pages 1-24, February.
    11. Xiao Yang & Fengrong Bi & Yabing Jing & Xin Li & Guichang Zhang, 2022. "A Condition-Monitoring Approach for Diesel Engines Based on an Adaptive VMD and Sparse Representation Theory," Energies, MDPI, vol. 15(9), pages 1-20, May.
    12. Zhaoguang Xu & Yanzhong Dang & Peter Munro & Yuhang Wang, 2020. "A data-driven approach for constructing the component-failure mode matrix for FMEA," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 249-265, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01600-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.