IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307672.html
   My bibliography  Save this article

Mechanical equipment fault diagnosis method based on improved deep residual shrinkage network

Author

Listed:
  • Shaoming Qiu
  • Liangyu Liu
  • Yan Wang
  • Xinchen Huang
  • Bicong E.
  • Jingfeng Ye

Abstract

Fault diagnosis of mechanical equipment can effectively reduce property losses and casualties. Bearing vibration signals, as one of the effective sources of diagnostic information, are often overwhelmed by substantial environmental noise. To address this issue, we present a fault diagnosis method, CCSDRSN, which exhibits strong noise resistance. This method enhances the soft threshold function in the traditional deep residual shrinkage network, allowing it to extract useful information from the fault signal to the maximum extent, thus significantly improving diagnostic accuracy. Additionally, we have developed a novel activation function that can nonlinearly transform the time frequency map across multiple dimensions and the entire region. In pursuit of network optimization and parameter reduction, we have strategically incorporated depthwise separable convolutions, effectively replacing conventional convolutional layers. This architectural innovation streamlines the network. By verifying the effectiveness of the proposed method using Case Western Reserve University datasets, the results demonstrate that the proposed method not only possesses strong noise resistance in high noise environments but also achieves high diagnostic accuracy and good generalization performance under different load conditions.

Suggested Citation

  • Shaoming Qiu & Liangyu Liu & Yan Wang & Xinchen Huang & Bicong E. & Jingfeng Ye, 2024. "Mechanical equipment fault diagnosis method based on improved deep residual shrinkage network," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-32, October.
  • Handle: RePEc:plo:pone00:0307672
    DOI: 10.1371/journal.pone.0307672
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307672
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307672&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    2. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenpo & Zhang, Dayu & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & She, Chengqi, 2024. "An online inconsistency evaluation and abnormal cell identification method for real-world electric vehicles," Energy, Elsevier, vol. 307(C).
    2. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Sangho Lee & Jeongsub Choi & Youngdoo Son, 2024. "Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network," Annals of Operations Research, Springer, vol. 339(1), pages 813-833, August.
    4. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    5. Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2025. "Intelligent G-code-based power prediction of ultra-precision CNC machine tools through 1DCNN-LSTM-Attention model," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1237-1260, February.
    6. Roman Rodriguez-Aguilar & Jose-Antonio Marmolejo-Saucedo & Utku Köse, 2024. "Development of a Digital Twin Driven by a Deep Learning Model for Fault Diagnosis of Electro-Hydrostatic Actuators," Mathematics, MDPI, vol. 12(19), pages 1-17, October.
    7. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Hongquan Gui & Jialan Liu & Chi Ma & Mengyuan Li, 2024. "Industrial-oriented machine learning big data framework for temporal-spatial error prediction and control with DTSMGCN model," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1173-1196, March.
    9. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
    10. Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Jianyu Long & Yibin Chen & Huiyu Huang & Zhe Yang & Yunwei Huang & Chuan Li, 2024. "Multidomain variance-learnable prototypical network for few-shot diagnosis of novel faults," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1455-1467, April.
    12. Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
    13. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
    15. Xiaorui Shao & Ahyoung Lee & Chang-Soo Kim, 2025. "DL-MSCNN: a general and lightweight framework for fault diagnosis with limited training samples," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 147-166, January.
    16. Huanjie Wang & Yuan Li & Xiwei Bai & Jingwei Li & Jie Tan & Chengbao Liu, 2024. "Label propagation-based unsupervised domain adaptation for intelligent fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3131-3148, October.
    17. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    18. Jiayang Liu & Fuqi Xie & Qiang Zhang & Qiucheng Lyu & Xiaosun Wang & Shijing Wu, 2024. "A multisensory time-frequency features fusion method for rotating machinery fault diagnosis under nonstationary case," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3197-3217, October.
    19. Chen Yin & Yulin Wang & Jeong Hoon Ko & Heow Pueh Lee & Yuxin Sun, 2024. "Attention-driven transfer learning framework for dynamic model guided time domain chatter detection," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1867-1885, April.
    20. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Xiangli, Kang & Meng, Dean, 2024. "A novel method for fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted Euclidean distance evaluation and statistical analysis," Energy, Elsevier, vol. 293(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.