IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp615-626.html
   My bibliography  Save this article

Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors

Author

Listed:
  • Xu, Zifei
  • Mei, Xuan
  • Wang, Xinyu
  • Yue, Minnan
  • Jin, Jiangtao
  • Yang, Yang
  • Li, Chun

Abstract

In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level.

Suggested Citation

  • Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:615-626
    DOI: 10.1016/j.renene.2021.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    2. Lin, Zhongwei & Chen, Zhenyu & Wu, Qiuwei & Yang, Shuo & Meng, Hongmin, 2018. "Coordinated pitch & torque control of large-scale wind turbine based on Pareto efficiency analysis," Energy, Elsevier, vol. 147(C), pages 812-825.
    3. Zuo, Hongyan & Tan, Jiqiu & Wei, Kexiang & Huang, Zhonghua & Zhong, Dingqing & Xie, Fuchun, 2021. "Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system," Renewable Energy, Elsevier, vol. 168(C), pages 1308-1326.
    4. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
    5. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    6. Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
    7. Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    2. Xie, Tianming & Xu, Qifa & Jiang, Cuixia & Lu, Shixiang & Wang, Xiangxiang, 2023. "The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 202(C), pages 143-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
    2. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    4. Kong, Yun & Qin, Zhaoye & Wang, Tianyang & Han, Qinkai & Chu, Fulei, 2021. "An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines," Renewable Energy, Elsevier, vol. 173(C), pages 987-1004.
    5. Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
    6. Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
    7. Guo, Sheng & Yang, Tao & Hua, Haochen & Cao, Junwei, 2021. "Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information," Renewable Energy, Elsevier, vol. 178(C), pages 639-650.
    8. Zhaoyan Zhang & Shaoke Wang & Peiguang Wang & Ping Jiang & Hang Zhou, 2022. "Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN," Energies, MDPI, vol. 15(23), pages 1-18, November.
    9. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    10. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    11. He, Deqiang & Liu, Chenyu & Jin, Zhenzhen & Ma, Rui & Chen, Yanjun & Shan, Sheng, 2022. "Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning," Energy, Elsevier, vol. 239(PB).
    12. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.
    13. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    14. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    15. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    16. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    17. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
    19. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    20. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:615-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.