IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp251-262.html
   My bibliography  Save this article

A new dynamic predictive maintenance framework using deep learning for failure prognostics

Author

Listed:
  • Nguyen, Khanh T.P.
  • Medjaher, Kamal

Abstract

In Prognostic Health and Management (PHM) literature, the predictive maintenance studies can be classified into two groups. The first group focuses on the prognostics step but does not consider the maintenance decisions. The second group addresses the maintenance optimization question based on the assumptions that the prognostics information or the degradation models of the system are already known. However, none of the two groups provides a complete framework (from data-driven prognostics to maintenance decisions) investigating the impact of the imperfect prognostics on maintenance decision. Therefore, this paper aims to fill this gap of literature. It presents a novel dynamic predicive maintenance framework based on sensor measurements. In this framework, the prognostics step, based on the Long Short-Term Memory network, is oriented towards the requirements of operation planners. It provides the probabilities that the system can fail in different time horizons to decide the moment for preparing and performing maintenance activities. The proposed framework is validated on a real application case study. Its performance is highlighted when compared with two benchmark maintenance policies: classical periodic and ideal predicted maintenance. In addition, the impact of the imperfect prognostics information on maintenance decisions is discussed in this paper.

Suggested Citation

  • Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:251-262
    DOI: 10.1016/j.ress.2019.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018311050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mosallam & K. Medjaher & N. Zerhouni, 2016. "Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1037-1048, October.
    2. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    3. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    4. Christer, A. H. & Wang, W. & Sharp, J. M., 1997. "A state space condition monitoring model for furnace erosion prediction and replacement," European Journal of Operational Research, Elsevier, vol. 101(1), pages 1-14, August.
    5. Listou Ellefsen, André & Bjørlykhaug, Emil & Æsøy, Vilmar & Ushakov, Sergey & Zhang, Houxiang, 2019. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 240-251.
    6. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    7. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    8. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    9. Nguyen, T.P.K. & Castanier, Bruno & Yeung, Thomas G., 2014. "Maintaining a system subject to uncertain technological evolution," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 56-65.
    10. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    11. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    12. Khanh T.P. Nguyen & Thomas Yeung & Bruno Castanier, 2017. "Acquisition of new technology information for maintenance and replacement policies," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2212-2231, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    7. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    8. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    9. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Si, Xiao-Sheng & Chen, Mao-Yin & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "Specifying measurement errors for required lifetime estimation performance," European Journal of Operational Research, Elsevier, vol. 231(3), pages 631-644.
    15. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    17. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    19. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:251-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.