IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v154y2016icp137-151.html
   My bibliography  Save this article

Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling

Author

Listed:
  • Memarzadeh, Milad
  • Pozzi, Matteo

Abstract

We illustrate how to assess the Value of Information (VoI) in sequential decision making problems modeled by Partially Observable Markov Decision Processes (POMDPs). POMDPs provide a general framework for modeling the management of infrastructure components, including operation and maintenance, when only partial or noisy observations are available; VoI is a key concept for selecting explorative actions, with application to component inspection and monitoring. Furthermore, component-level VoI can serve as an effective heuristic for assigning priorities to system-level inspection scheduling. We introduce two alternative models for the availability of information, and derive the VoI in each of those settings: the Stochastic Allocation (SA) model assumes that observations are collected with a given probability, while the Fee-based Allocation model (FA) assumes that they are available at a given cost. After presenting these models at component-level, we investigate how they perform for system-level inspection scheduling.

Suggested Citation

  • Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
  • Handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:137-151
    DOI: 10.1016/j.ress.2016.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William S. Lovejoy, 1991. "Computationally Feasible Bounds for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 39(1), pages 162-175, February.
    2. Gomes, Wellison J.S. & Beck, André T. & Haukaas, Terje, 2013. "Optimal inspection planning for onshore pipelines subject to external corrosion," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 18-27.
    3. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    4. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    5. Malings, Carl & Pozzi, Matteo, 2016. "Value of information for spatially distributed systems: Application to sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 219-233.
    6. Memarzadeh, Milad & Pozzi, Matteo & Kolter, J. Zico, 2016. "Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 159-169.
    7. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    8. Vikram Krishnamurthy & Bo Wahlberg, 2009. "Partially Observed Markov Decision Process Multiarmed Bandits---Structural Results," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 287-302, May.
    9. Kamal Golabi & Ram B. Kulkarni & George B. Way, 1982. "A Statewide Pavement Management System," Interfaces, INFORMS, vol. 12(6), pages 5-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Zou, Guang & Kolios, Athanasios, 2022. "Quantifying the value of negative inspection outcomes in fatigue maintenance planning: Cost reduction, risk mitigation and reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Yuan, Xian-Xun & Higo, Eishiro & Pandey, Mahesh D., 2021. "Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Bismut, Elizabeth & Pandey, Mahesh D. & Straub, Daniel, 2022. "Reliability-based inspection and maintenance planning of a nuclear feeder piping system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    6. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    8. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Kapoor, Medha & Christensen, Christian Overgaard & Schmidt, Jacob Wittrup & Sørensen, John Dalsgaard & Thöns, Sebastian, 2023. "Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Lozano, Jorge-Mario & Zuluaga, Santiago & Sánchez-Silva, Mauricio, 2020. "Developing flexible management strategies in infrastructure: The sequential expansion problem for infrastructure analysis (SEPIA)," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    11. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Malings, Carl & Pozzi, Matteo, 2016. "Value of information for spatially distributed systems: Application to sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 219-233.
    13. Compare, Michele & Baraldi, Piero & Marelli, Paolo & Zio, Enrico, 2020. "Partially observable Markov decision processes for optimal operations of gas transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    14. Malings, C. & Pozzi, M., 2019. "Submodularity issues in value-of-information-based sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 93-103.
    15. Michele Compare & Paolo Marelli & Piero Baraldi & Enrico Zio, 2018. "A Markov decision process framework for optimal operation of monitored multi-state systems," Journal of Risk and Reliability, , vol. 232(6), pages 677-689, December.
    16. Lin, Chaochao & Song, Junho & Pozzi, Matteo, 2022. "Optimal inspection of binary systems via Value of Information analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Byun, Ji-Eun & Song, Junho, 2020. "Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    18. Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
    19. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Pozzi, Matteo & Malings, Carl & Minca, Andreea, 2020. "Information avoidance and overvaluation under epistemic constraints: Principles and implications for regulatory policies," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Yuan, Xian-Xun & Higo, Eishiro & Pandey, Mahesh D., 2021. "Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    10. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    11. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    12. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    15. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Lozano, Jorge-Mario & Zuluaga, Santiago & Sánchez-Silva, Mauricio, 2020. "Developing flexible management strategies in infrastructure: The sequential expansion problem for infrastructure analysis (SEPIA)," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    18. Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2017. "Performance analysis of an aggregation and disaggregation solution procedure to obtain a maintenance plan for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 652-662.
    19. Nozhati, Saeed & Sarkale, Yugandhar & Chong, Edwin K.P. & Ellingwood, Bruce R., 2020. "Optimal stochastic dynamic scheduling for managing community recovery from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Nozhati, Saeed & Sarkale, Yugandhar & Ellingwood, Bruce & K.P. Chong, Edwin & Mahmoud, Hussam, 2019. "Near-optimal planning using approximate dynamic programming to enhance post-hazard community resilience management," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 116-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:137-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.