IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v232y2023ics0951832022006640.html
   My bibliography  Save this article

Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading

Author

Listed:
  • Kapoor, Medha
  • Christensen, Christian Overgaard
  • Schmidt, Jacob Wittrup
  • Sørensen, John Dalsgaard
  • Thöns, Sebastian

Abstract

Reclassification of bridges, i.e., a change in load rating, using reliability-based methods and a direct update with proof load information has been presented by many authors. However, bridge reclassification has hardly been studied from a decision analytic perspective, i.e., with quantification of the risks and benefits of different classification choices, and the expected benefit gain from proof loading. We derive, explain and exemplify a decision analytic approach for bridge reclassification along with models for (1) elastic and ultimate capacity and their adaptation with proof load information, (2) proof load information with classification outcomes accounting for target reliabilities and, (3) utilities including socio-economic benefits from reclassification. The approach and models are exemplified with a case study based on reclassification of bridges with a low existing classification. Decision rules, for practical use by a highway authority to find the optimal classification, are identified and documented based on: (1) the measurement of the capacity at elastic limit by proof loading, (2) the bridge reclassification benefits, and, (3) the required annual reliability level. From a Value of Information analysis, it is concluded that the proof load information is highly valuable for reclassification in cases of high socio-economic benefits and high reliability requirements.

Suggested Citation

  • Kapoor, Medha & Christensen, Christian Overgaard & Schmidt, Jacob Wittrup & Sørensen, John Dalsgaard & Thöns, Sebastian, 2023. "Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006640
    DOI: 10.1016/j.ress.2022.109049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    2. Chadha, Mayank & Ramancha, Mukesh K. & Vega, Manuel A. & Conte, Joel P. & Todd, Michael D., 2023. "The modeling of risk perception in the use of structural health monitoring information for optimal maintenance decisions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Malings, C. & Pozzi, M., 2018. "Value-of-information in spatio-temporal systems: Sensor placement and scheduling," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 45-57.
    4. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    5. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    6. Marks, Nicholas A & Stewart, Mark G. & Netherton, Michael D. & Stirling, Chris G., 2021. "Airblast variability and fatality risks from a VBIED in a complex urban environment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Malings, Carl & Pozzi, Matteo, 2016. "Value of information for spatially distributed systems: Application to sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 219-233.
    8. Pozzi, Matteo & Malings, Carl & Minca, Andreea, 2020. "Information avoidance and overvaluation under epistemic constraints: Principles and implications for regulatory policies," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. Zou, Guang & Kolios, Athanasios, 2022. "Quantifying the value of negative inspection outcomes in fatigue maintenance planning: Cost reduction, risk mitigation and reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Lin, Chaochao & Song, Junho & Pozzi, Matteo, 2022. "Optimal inspection of binary systems via Value of Information analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Zou, Guang & Kolios, Athanasios, 2022. "Quantifying the value of negative inspection outcomes in fatigue maintenance planning: Cost reduction, risk mitigation and reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Yuan, Xian-Xun & Higo, Eishiro & Pandey, Mahesh D., 2021. "Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Malings, C. & Pozzi, M., 2019. "Submodularity issues in value-of-information-based sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 93-103.
    7. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Pozzi, Matteo & Malings, Carl & Minca, Andreea, 2020. "Information avoidance and overvaluation under epistemic constraints: Principles and implications for regulatory policies," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. Daneshkhah, A. & Stocks, N.G. & Jeffrey, P., 2017. "Probabilistic sensitivity analysis of optimised preventive maintenance strategies for deteriorating infrastructure assets," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 33-45.
    10. Straub, Daniel & Ehre, Max & Papaioannou, Iason, 2022. "Decision-theoretic reliability sensitivity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Zhu, Tiantian & Haugen, Stein & Liu, Yiliu & Yang, Xue, 2023. "A value of prediction model to estimate optimal response time to threats for accident prevention," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    14. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    15. Michele Compare & Paolo Marelli & Piero Baraldi & Enrico Zio, 2018. "A Markov decision process framework for optimal operation of monitored multi-state systems," Journal of Risk and Reliability, , vol. 232(6), pages 677-689, December.
    16. Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
    17. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    19. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    20. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.