IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v216y2014i1p205-22710.1007-s10479-012-1241-z.html
   My bibliography  Save this article

Robust support vector machines for multiple instance learning

Author

Listed:
  • Mohammad Poursaeidi
  • O. Kundakcioglu

Abstract

This paper presents the multiple instance classification problem that can be used for drug and molecular activity prediction, text categorization, image annotation, and object recognition. In order to model a more robust representation of outliers, hard margin loss formulations that minimize the number of misclassified instances are proposed. Although the problem is $\mathcal{NP}$ -hard, computational studies show that medium sized problems can be solved to optimality in reasonable time using integer programming and constraint programming formulations. A three-phase heuristic algorithm is proposed for larger problems. Furthermore, different loss functions such as hinge loss, ramp loss, and hard margin loss are empirically compared in the context of multiple instance classification. The proposed heuristic and robust support vector machines with hard margin loss demonstrate superior generalization performance compared to other approaches for multiple instance learning. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Mohammad Poursaeidi & O. Kundakcioglu, 2014. "Robust support vector machines for multiple instance learning," Annals of Operations Research, Springer, vol. 216(1), pages 205-227, May.
  • Handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:205-227:10.1007/s10479-012-1241-z
    DOI: 10.1007/s10479-012-1241-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1241-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1241-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trafalis, Theodore B. & Gilbert, Robin C., 2006. "Robust classification and regression using support vector machines," European Journal of Operational Research, Elsevier, vol. 173(3), pages 893-909, September.
    2. O. L. Mangasarian & E. W. Wild, 2008. "Multiple Instance Classification via Successive Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 555-568, June.
    3. J. Paul Brooks, 2011. "Support Vector Machines with the Ramp Loss and the Hard Margin Loss," Operations Research, INFORMS, vol. 59(2), pages 467-479, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ching-Hsin Wang & Feng-Chia Li, 2020. "Economic design under gamma shock model of the control chart for sustainable operations," Annals of Operations Research, Springer, vol. 290(1), pages 169-190, July.
    2. Shuguang He & Wei Jiang & Houtao Deng, 2018. "A distance-based control chart for monitoring multivariate processes using support vector machines," Annals of Operations Research, Springer, vol. 263(1), pages 191-207, April.
    3. I. Edhem Sakarya & O. Erhun Kundakcioglu, 2023. "Multi-instance learning by maximizing the area under receiver operating characteristic curve," Journal of Global Optimization, Springer, vol. 85(2), pages 351-375, February.
    4. Emel Şeyma Küçükaşcı & Mustafa Gökçe Baydoğan & Z. Caner Taşkın, 2022. "Multiple instance classification via quadratic programming," Journal of Global Optimization, Springer, vol. 83(4), pages 639-670, August.
    5. Onur Şeref & Talayeh Razzaghi & Petros Xanthopoulos, 2017. "Weighted relaxed support vector machines," Annals of Operations Research, Springer, vol. 249(1), pages 235-271, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Luo & Shu-Cherng Fang & Zhibin Deng & Xiaoling Guo, 2016. "Soft Quadratic Surface Support Vector Machine for Binary Classification," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-22, December.
    2. Ximing Wang & Neng Fan & Panos M. Pardalos, 2018. "Robust chance-constrained support vector machines with second-order moment information," Annals of Operations Research, Springer, vol. 263(1), pages 45-68, April.
    3. Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
    4. J. Paul Brooks & Eva K. Lee, 2014. "Solving a Multigroup Mixed-Integer Programming-Based Constrained Discrimination Model," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 567-585, August.
    5. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    6. Baldomero-Naranjo, Marta & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M., 2020. "Tightening big Ms in integer programming formulations for support vector machines with ramp loss," European Journal of Operational Research, Elsevier, vol. 286(1), pages 84-100.
    7. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    8. Petros Xanthopoulos & Mario Guarracino & Panos Pardalos, 2014. "Robust generalized eigenvalue classifier with ellipsoidal uncertainty," Annals of Operations Research, Springer, vol. 216(1), pages 327-342, May.
    9. Pietro Belotti & Pierre Bonami & Matteo Fischetti & Andrea Lodi & Michele Monaci & Amaya Nogales-Gómez & Domenico Salvagnin, 2016. "On handling indicator constraints in mixed integer programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 545-566, December.
    10. Peter Tsyurmasto & Michael Zabarankin & Stan Uryasev, 2014. "Value-at-risk support vector machine: stability to outliers," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 218-232, July.
    11. Emel Şeyma Küçükaşcı & Mustafa Gökçe Baydoğan & Z. Caner Taşkın, 2022. "Multiple instance classification via quadratic programming," Journal of Global Optimization, Springer, vol. 83(4), pages 639-670, August.
    12. Wenxin Zhu & Yunyan Song & Yingyuan Xiao, 2018. "A New Support Vector Machine Plus with Pinball Loss," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 52-70, April.
    13. Xianning Wang & Zhengang Ma & Jiusheng Chen & Jingrong Dong, 2023. "Can Regional Eco-Efficiency Forecast the Changes in Local Public Health: Evidence Based on Statistical Learning in China," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    14. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    15. Xianning Wang & Zhengang Ma & Jingrong Dong, 2021. "Quantitative Impact Analysis of Climate Change on Residents’ Health Conditions with Improving Eco-Efficiency in China: A Machine Learning Perspective," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    16. Jin Xiao & Yuhang Tian & Yanlin Jia & Xiaoyi Jiang & Lean Yu & Shouyang Wang, 2023. "Black-Box Attack-Based Security Evaluation Framework for Credit Card Fraud Detection Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 986-1001, September.
    17. Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
    18. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    19. Maryam Abaszade & Sohrab Effati, 2019. "A New Method for Classifying Random Variables Based on Support Vector Machine," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 152-174, April.
    20. Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:205-227:10.1007/s10479-012-1241-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.