IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v65y2016i3d10.1007_s10589-016-9847-8.html
   My bibliography  Save this article

On handling indicator constraints in mixed integer programming

Author

Listed:
  • Pietro Belotti

    (FICO)

  • Pierre Bonami

    (IBM)

  • Matteo Fischetti

    (University of Padova)

  • Andrea Lodi

    (University of Bologna
    École Polytechnique de Montréal)

  • Michele Monaci

    (University of Bologna)

  • Amaya Nogales-Gómez

    (Mathematical and Algorithmic Sciences Lab, Huawei France R&D)

  • Domenico Salvagnin

    (University of Padova
    IBM)

Abstract

Mixed integer programming (MIP) is commonly used to model indicator constraints, i.e., constraints that either hold or are relaxed depending on the value of a binary variable. Unfortunately, those models tend to lead to weak continuous relaxations and turn out to be unsolvable in practice; this is what happens, for e.g., in the case of Classification problems with Ramp Loss functions that represent an important application in this context. In this paper we show the computational evidence that a relevant class of these Classification instances can be solved far more efficiently if a nonlinear, nonconvex reformulation of the indicator constraints is used instead of the linear one. Inspired by this empirical and surprising observation, we show that aggressive bound tightening is the crucial ingredient for solving this class of instances, and we devise a pair of computationally effective algorithmic approaches that exploit it within MIP. One of these methods is currently part of the arsenal of IBM-Cplex since version 12.6.1. More generally, we argue that aggressive bound tightening is often overlooked in MIP, while it represents a significant building block for enhancing MIP technology when indicator constraints and disjunctive terms are present.

Suggested Citation

  • Pietro Belotti & Pierre Bonami & Matteo Fischetti & Andrea Lodi & Michele Monaci & Amaya Nogales-Gómez & Domenico Salvagnin, 2016. "On handling indicator constraints in mixed integer programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 545-566, December.
  • Handle: RePEc:spr:coopap:v:65:y:2016:i:3:d:10.1007_s10589-016-9847-8
    DOI: 10.1007/s10589-016-9847-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9847-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9847-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    2. J. Paul Brooks, 2011. "Support Vector Machines with the Ramp Loss and the Hard Margin Loss," Operations Research, INFORMS, vol. 59(2), pages 467-479, April.
    3. Matteo Fischetti & Michele Monaci, 2014. "Exploiting Erraticism in Search," Operations Research, INFORMS, vol. 62(1), pages 114-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyu Liu & Ou Liu & Xiaoming Jiang, 2023. "An Efficient Algorithm for the Joint Replenishment Problem with Quantity Discounts, Minimum Order Quantity and Transport Capacity Constraints," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    2. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    3. Wu, Baiyi & Li, Duan & Jiang, Rujun, 2019. "Quadratic convex reformulation for quadratic programming with linear on–off constraints," European Journal of Operational Research, Elsevier, vol. 274(3), pages 824-836.
    4. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    5. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    6. Dimitri J. Papageorgiou & Francisco Trespalacios, 2018. "Pseudo basic steps: bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 55-83, March.
    7. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    8. Baldomero-Naranjo, Marta & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M., 2020. "Tightening big Ms in integer programming formulations for support vector machines with ramp loss," European Journal of Operational Research, Elsevier, vol. 286(1), pages 84-100.
    9. Ksenia Bestuzheva & Hassan Hijazi & Carleton Coffrin, 2020. "Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 682-696, July.
    10. Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
    11. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    12. Maximilian Merkert & Galina Orlinskaya & Dieter Weninger, 2022. "An exact projection-based algorithm for bilevel mixed-integer problems with nonlinearities," Journal of Global Optimization, Springer, vol. 84(3), pages 607-650, November.
    13. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.
    2. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    3. Liang Chen & Wei-Kun Chen & Mu-Ming Yang & Yu-Hong Dai, 2021. "An exact separation algorithm for unsplittable flow capacitated network design arc-set polyhedron," Journal of Global Optimization, Springer, vol. 81(3), pages 659-689, November.
    4. Jian Luo & Shu-Cherng Fang & Zhibin Deng & Xiaoling Guo, 2016. "Soft Quadratic Surface Support Vector Machine for Binary Classification," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-22, December.
    5. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    6. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    7. Michele Monaci & André Gustavo Santos, 2018. "Minimum tiling of a rectangle by squares," Annals of Operations Research, Springer, vol. 271(2), pages 831-851, December.
    8. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    9. Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
    10. Xianning Wang & Zhengang Ma & Jiusheng Chen & Jingrong Dong, 2023. "Can Regional Eco-Efficiency Forecast the Changes in Local Public Health: Evidence Based on Statistical Learning in China," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    11. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    12. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    13. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    14. Ndayikengurutse Adrien & Huang Siming, 2020. "Implementation of Presolving and Interior-Point Algorithm for Linear & Mixed Integer Programming: SOFTWARE," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 195-223, June.
    15. Jin Xiao & Yuhang Tian & Yanlin Jia & Xiaoyi Jiang & Lean Yu & Shouyang Wang, 2023. "Black-Box Attack-Based Security Evaluation Framework for Credit Card Fraud Detection Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 986-1001, September.
    16. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
    17. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    18. Alexander Schnell & Richard F. Hartl, 2016. "On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 283-303, March.
    19. Luke Mason & Vicky Mak-Hau & Andreas Ernst, 2015. "A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning," Computational Optimization and Applications, Springer, vol. 60(2), pages 441-477, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:3:d:10.1007_s10589-016-9847-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.