IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i2p573-584.html
   My bibliography  Save this article

Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy

Author

Listed:
  • Ma, Xiyuan
  • Rossi, Roberto
  • Archibald, Thomas Welsh

Abstract

This paper addresses the single-item single-stocking location non-stationary stochastic lot-sizing problem under a reorder point – order quantity control strategy. The reorder points and order quantities are chosen at the beginning of the planning horizon. The reorder points are allowed to vary with time and we consider order quantities either to be a series of time-dependent constants or a fixed value; this leads to two variants of the policy: the (st,Qt) and the (st,Q) policies, respectively. For both policies, we present stochastic dynamic programs (SDP) to determine optimal policy parameters and introduce mixed integer non-linear programming (MINLP) heuristics that leverage piecewise-linear approximations of the cost function. Numerical experiments demonstrate that our solution method efficiently computes near-optimal parameters for a broad class of problem instances.

Suggested Citation

  • Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:2:p:573-584
    DOI: 10.1016/j.ejor.2021.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721005191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarim, S. Armagan & Kingsman, Brian G., 2004. "The stochastic dynamic production/inventory lot-sizing problem with service-level constraints," International Journal of Production Economics, Elsevier, vol. 88(1), pages 105-119, March.
    2. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    3. Pietro Belotti & Pierre Bonami & Matteo Fischetti & Andrea Lodi & Michele Monaci & Amaya Nogales-Gómez & Domenico Salvagnin, 2016. "On handling indicator constraints in mixed integer programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 545-566, December.
    4. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    5. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    6. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    7. Yu-Sheng Zheng & A. Federgruen, 1991. "Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy," Operations Research, INFORMS, vol. 39(4), pages 654-665, August.
    8. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    9. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    10. Srinivas Bollapragada & Thomas E. Morton, 1999. "A Simple Heuristic for Computing Nonstationary (s, S) Policies," Operations Research, INFORMS, vol. 47(4), pages 576-584, August.
    11. Tarim, S. Armagan & Dogru, Mustafa K. & Özen, Ulas & Rossi, Roberto, 2011. "An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints," European Journal of Operational Research, Elsevier, vol. 215(3), pages 563-571, December.
    12. Vargas, Vicente, 2009. "An optimal solution for the stochastic version of the Wagner-Whitin dynamic lot-size model," European Journal of Operational Research, Elsevier, vol. 198(2), pages 447-451, October.
    13. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    14. Guillermo Gallego & L. Beril Toktay, 2004. "All-or-Nothing Ordering Under a Capacity Constraint," Operations Research, INFORMS, vol. 52(6), pages 1001-1002, December.
    15. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
    16. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    17. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    18. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    2. Chen, Zhen & Rossi, Roberto, 2021. "A dynamic ordering policy for a stochastic inventory problem with cash constraints," Omega, Elsevier, vol. 102(C).
    3. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    4. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    5. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    6. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2013. "A simple approach for assessing the cost of system nervousness," International Journal of Production Economics, Elsevier, vol. 141(2), pages 619-625.
    7. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    8. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    9. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    10. Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
    11. Liu, Kanglin & Zhang, Zhi-Hai, 2018. "Capacitated disassembly scheduling under stochastic yield and demand," European Journal of Operational Research, Elsevier, vol. 269(1), pages 244-257.
    12. Dehaybe, Henri & Catanzaro, Daniele & Chevalier, Philippe, 2024. "Deep Reinforcement Learning for inventory optimization with non-stationary uncertain demand," European Journal of Operational Research, Elsevier, vol. 314(2), pages 433-445.
    13. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    14. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    15. Céline Gicquel & Jianqiang Cheng, 2018. "A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand," Annals of Operations Research, Springer, vol. 264(1), pages 123-155, May.
    16. Simon Thevenin & Yossiri Adulyasak & Jean-François Cordeau, 2022. "Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3151-3169, November.
    17. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.
    18. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    19. Roberto Rossi & S. Tarim & Brahim Hnich & Steven Prestwich, 2012. "Constraint programming for stochastic inventory systems under shortage cost," Annals of Operations Research, Springer, vol. 195(1), pages 49-71, May.
    20. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:2:p:573-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.