IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i2p433-445.html
   My bibliography  Save this article

Deep Reinforcement Learning for inventory optimization with non-stationary uncertain demand

Author

Listed:
  • Dehaybe, Henri
  • Catanzaro, Daniele
  • Chevalier, Philippe

Abstract

We consider here a single-item lot sizing problem with fixed costs, lead time, and both backorders and lost sales, and we show that, after an appropriate training in randomly generated environments, Deep Reinforcement Learning (DRL) agents can interpolate in real-time near-optimal dynamic policies on instances with a rolling-horizon, provided a previously unseen demand forecast and without the need to periodically resolve the problem. Extensive computational experiments show that the policies provided by these agents compete, and in some circumstances even outperform by several percentage points of gap, those provided by heuristics based on dynamic programming. These results confirm the importance of DRL in the context of inventory control problems and support its use in solving practical instances featuring realistic assumptions.

Suggested Citation

  • Dehaybe, Henri & Catanzaro, Daniele & Chevalier, Philippe, 2024. "Deep Reinforcement Learning for inventory optimization with non-stationary uncertain demand," European Journal of Operational Research, Elsevier, vol. 314(2), pages 433-445.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:433-445
    DOI: 10.1016/j.ejor.2023.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:433-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.