IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v92y2025i3d10.1007_s10898-025-01495-4.html
   My bibliography  Save this article

Computing one-bit compressive sensing via zero-norm regularized DC loss model and its surrogate

Author

Listed:
  • Kai Chen

    (Renmin University of China)

  • Ling Liang

    (Guangzhou College of Technology and Business)

  • Shaohua Pan

    (South China University of Technology)

Abstract

One-bit compressed sensing is very popular in signal processing and communications due to its low storage costs and hardware complexity, but it is challenging to recover the signal by the one-bit information. In this paper, we propose a zero-norm regularized smooth difference of convexity (DC) loss model and derive a family of equivalent nonconvex surrogates covering the MCP and SCAD ones. Compared with the existing models, the new model and its SCAD surrogate have better robustness. To apply the proximal gradient (PG) methods with extrapolation to compute their $$\tau $$ τ -critical points, we provide the expression of the proximal mapping of the zero-norm (resp. $$\ell _1$$ ℓ 1 -norm) plus the indicator of unit sphere. In particular, we prove that under a mild condition, the objective functions of the proposed model and its SCAD surrogate are the KL function of exponent 0, so that the PG methods with extrapolation applied to them possess a local R-linear convergence rate and the PG methods applied to them have a finite termination. Numerical comparisons with several state-of-art methods show that in terms of the quality of solution, the proposed models are remarkably superior to the $$\ell _p$$ ℓ p -norm regularized models, and are comparable even superior to those models with a sparsity constraint involving the true sparsity and the sign flip ratio as inputs.

Suggested Citation

  • Kai Chen & Ling Liang & Shaohua Pan, 2025. "Computing one-bit compressive sensing via zero-norm regularized DC loss model and its surrogate," Journal of Global Optimization, Springer, vol. 92(3), pages 775-807, July.
  • Handle: RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01495-4
    DOI: 10.1007/s10898-025-01495-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-025-01495-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-025-01495-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dongdong Zhang & Shaohua Pan & Shujun Bi & Defeng Sun, 2023. "Zero-norm regularized problems: equivalent surrogates, proximal MM method and statistical error bound," Computational Optimization and Applications, Springer, vol. 86(2), pages 627-667, November.
    2. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Yuqia Wu & Shaohua Pan & Shujun Bi, 2021. "Kurdyka–Łojasiewicz Property of Zero-Norm Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 94-112, January.
    5. J. Paul Brooks, 2011. "Support Vector Machines with the Ramp Loss and the Hard Margin Loss," Operations Research, INFORMS, vol. 59(2), pages 467-479, April.
    6. Yulan Liu & Shujun Bi & Shaohua Pan, 2018. "Equivalent Lipschitz surrogates for zero-norm and rank optimization problems," Journal of Global Optimization, Springer, vol. 72(4), pages 679-704, December.
    7. Yitian Qian & Shaohua Pan & Yulan Liu, 2023. "Calmness of partial perturbation to composite rank constraint systems and its applications," Journal of Global Optimization, Springer, vol. 85(4), pages 867-889, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongdong Zhang & Shaohua Pan & Shujun Bi & Defeng Sun, 2023. "Zero-norm regularized problems: equivalent surrogates, proximal MM method and statistical error bound," Computational Optimization and Applications, Springer, vol. 86(2), pages 627-667, November.
    2. Yitian Qian & Shaohua Pan & Yulan Liu, 2023. "Calmness of partial perturbation to composite rank constraint systems and its applications," Journal of Global Optimization, Springer, vol. 85(4), pages 867-889, April.
    3. Yaohua Hu & Jian Lu & Xiaoqi Yang & Kai Zhang, 2025. "Iterative mix thresholding algorithm with continuation technique for mix sparse optimization and application," Journal of Global Optimization, Springer, vol. 91(3), pages 511-534, March.
    4. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    5. Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 0. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-29.
    6. Liu, Jingjing & Ma, Ruijie & Zeng, Xiaoyang & Liu, Wanquan & Wang, Mingyu & Chen, Hui, 2021. "An efficient non-convex total variation approach for image deblurring and denoising," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    7. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    8. Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
    9. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    10. Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2019. "A refined convergence analysis of $$\hbox {pDCA}_{e}$$ pDCA e with applications to simultaneous sparse recovery and outlier detection," Computational Optimization and Applications, Springer, vol. 73(1), pages 69-100, May.
    11. Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 2022. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1924-1952, October.
    12. Guoyin Li & Tianxiang Liu & Ting Kei Pong, 2017. "Peaceman–Rachford splitting for a class of nonconvex optimization problems," Computational Optimization and Applications, Springer, vol. 68(2), pages 407-436, November.
    13. Wanyou Cheng & Zixin Chen & Qingjie Hu, 2020. "An active set Barzilar–Borwein algorithm for $$l_{0}$$l0 regularized optimization," Journal of Global Optimization, Springer, vol. 76(4), pages 769-791, April.
    14. Peiran Yu & Ting Kei Pong, 2019. "Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation," Computational Optimization and Applications, Springer, vol. 73(2), pages 353-386, June.
    15. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.
    16. Yue Xie & Uday V. Shanbhag, 2021. "Tractable ADMM schemes for computing KKT points and local minimizers for $$\ell _0$$ ℓ 0 -minimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 43-85, January.
    17. Gao-Xi Li & Xin-Min Yang, 2025. "Cardinality objective nonlinear programs for facility capacity expansion," Computational Optimization and Applications, Springer, vol. 92(1), pages 179-214, September.
    18. Xiu, Xianchao & Liu, Wanquan & Li, Ling & Kong, Lingchen, 2019. "Alternating direction method of multipliers for nonconvex fused regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 59-71.
    19. Xianfu Wang & Ziyuan Wang, 2023. "Calculus Rules of the Generalized Concave Kurdyka–Łojasiewicz Property," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 839-854, June.
    20. Yang, Yuan & McMahan, Christopher S. & Wang, Yu-Bo & Ouyang, Yuyuan, 2024. "Estimation of l0 norm penalized models: A statistical treatment," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01495-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.