IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics095183202500122x.html
   My bibliography  Save this article

Deep learning-stochastic ensemble for RUL prediction and predictive maintenance with dynamic mission abort policies

Author

Listed:
  • A., Faizanbasha
  • Rizwan, U.

Abstract

Accurate prediction of Remaining Useful Life (RUL) is crucial for optimizing maintenance strategies in industrial systems. However, existing models often falter under nonlinear and nonstationary degradation conditions with stochastic and abrupt failures, limiting their real-world effectiveness. To address this, we introduce a novel approach that combines advanced deep learning architectures with stochastic modeling and dynamic optimization techniques for more precise RUL prediction. This study has three overarching aims: First, to propose a hybrid ensemble model integrating convolutional neural networks, transformers, long short-term memory networks, and a smooth semi-martingale stochastic layer, a combination not previously explored, to effectively model both deterministic and stochastic degradation processes, thereby enhancing RUL prediction accuracy. Second, to introduce a reinforcement learning-based hyperparameter tuning method that dynamically adjusts model parameters, improving performance and reducing training time, which in turn optimizes the ensemble model’s predictive capabilities. Third, to integrate the refined RUL predictions and time-varying thresholds into a multi-stage optimization framework for mission cycle assignment and resource management. This facilitates real-time decision-making and the development of a dynamic mission abort policy, including mission shifting, re-engagement, post-abortion analysis, mission plan adjustments, and maintenance scheduling. Together, these innovations enhance RUL prediction accuracy, model adaptability, and operational efficiency, ensuring reliable and cost-effective maintenance strategies in mission-critical systems. The proposed model, validated using NASA’s C-MAPSS dataset, demonstrated superior RUL prediction accuracy over state-of-the-art methods, with sensitivity analyses and ablation studies confirming its stability and effectiveness.

Suggested Citation

  • A., Faizanbasha & Rizwan, U., 2025. "Deep learning-stochastic ensemble for RUL prediction and predictive maintenance with dynamic mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s095183202500122x
    DOI: 10.1016/j.ress.2025.110919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202500122X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Lin, Yan-Hui & Ding, Ze-Qi & Li, Yan-Fu, 2023. "Similarity based remaining useful life prediction based on Gaussian Process with active learning," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    4. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Shi, Jiayu & Zhong, Jingshu & Zhang, Yuxuan & Xiao, Bin & Xiao, Lei & Zheng, Yu, 2024. "A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Zhan, Yuling & Kong, Ziqian & Wang, Ziqi & Jin, Xiaohang & Xu, Zhengguo, 2024. "Remaining useful life prediction with uncertainty quantification based on multi-distribution fusion structure," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    9. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Chen, Jianhui & Gao, Hongda & Fang, Chen, 2025. "Optimal two-stage abort policy considering performance-based missions," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    13. Zeng, Junqi & Liang, Zhenglin, 2023. "A dynamic predictive maintenance approach using probabilistic deep learning for a fleet of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    14. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Dehghan Shoorkand, Hassan & Nourelfath, Mustapha & Hajji, Adnène, 2024. "A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Pan, Junlin & Sun, Bo & Wu, Zeyu & Yi, Zechen & Feng, Qiang & Ren, Yi & Wang, Zili, 2024. "Probabilistic remaining useful life prediction without lifetime labels: A Bayesian deep learning and stochastic process fusion method," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    21. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    22. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    23. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    24. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    25. Cheng, Guoqing & Shen, Jiayi & Wang, Fang & Li, Ling & Yang, Nan, 2024. "Optimal mission abort policy for a multi-component system with failure interaction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    26. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "A new self-adaptive mission aborting policy for systems operating in uncertain random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    27. Mitici, Mihaela & de Pater, Ingeborg & Barros, Anne & Zeng, Zhiguo, 2023. "Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    28. Fang, Chen & Chen, Jianhui & Qiu, Daizhen, 2024. "Reliability modeling for balanced systems considering mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    29. Qiu, Qingan & Cui, Lirong & Wu, Bei, 2020. "Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    30. Zhang, Yuru & Su, Chun & Wu, Jiajun & Liu, Hao & Xie, Mingjiang, 2024. "Trend-augmented and temporal-featured Transformer network with multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jianhui & Gao, Hongda & Fang, Chen, 2025. "Optimal two-stage abort policy considering performance-based missions," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal attempt scheduling and aborting in heterogenous system performing asynchronous multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal system loading and aborting in additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Optimal scheduling, loading and aborting in additive missions performed by multiple components in shock environment," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Expected losses minimization in missions with multi-phase rescue procedure," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    6. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Activation delay and aborting policy minimizing expected losses in consecutive attempts having cumulative effect on mission success," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal component activation in multi-attempt missions with common shock process," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Zhang, Yuru & Su, Chun & Wu, Jiajun & Liu, Hao & Xie, Mingjiang, 2024. "Trend-augmented and temporal-featured Transformer network with multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Optimal activation of components exposed to individual and common shock processes in asynchronous multi-phase missions," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Multi-attempt missions with multiple rescue options," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    12. Liu, Lujie & Yang, Jun & Zheng, Huiling & Li, Lei & Wang, Ning, 2025. "A dynamic multi-task selective execution policy considering stochastic dependence between degradation and random shocks by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    13. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Li, Xuanlin & Hu, Yawei & Wang, Hang & Liu, Yongbin & Liu, Xianzeng & Lu, Huitian, 2025. "A closed-form continuous-depth neural-based hybrid difference features re-representation network for RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. Lin, Chaojing & Chen, Yunxiao & Bai, Mingliang & Long, Zhenhua & Yao, Peng & Liu, Jinfu & Yu, Daren, 2025. "Improved multiple penalty mechanism based loss function for more realistic aeroengine RUL advanced prediction," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    16. Pan, Junlin & Sun, Bo & Wu, Zeyu & Yi, Zechen & Feng, Qiang & Ren, Yi & Wang, Zili, 2024. "Probabilistic remaining useful life prediction without lifetime labels: A Bayesian deep learning and stochastic process fusion method," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Wu, Xia & Liu, Zhiwen & Wang, Lei, 2025. "Spatio-temporal degradation model with graph neural network and structured state space model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    20. Finkelstein, Maxim & Cha, Ji Hwan, 2025. "Is our mission profitable: The cost-effectiveness curve with a possibility of a mission abort," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s095183202500122x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.