IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007354.html
   My bibliography  Save this article

A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction

Author

Listed:
  • Shi, Jiayu
  • Zhong, Jingshu
  • Zhang, Yuxuan
  • Xiao, Bin
  • Xiao, Lei
  • Zheng, Yu

Abstract

Accurate remaining useful life (RUL) prediction of degrading systems is crucial to predict failures in advance and develop maintenance plans. As systems degrade gradually over time, sequential degradation feature (SDF) is very important. However, in attention mechanism (AM) based RUL prediction approaches, the sequential operation at each time step is abandoned. Further, these methods are modeled based on numerous parameters, making it difficult to enable timely RUL prediction. Therefore, this paper proposes a dual attention and long short-term memory (LSTM) lightweight model (DA-LSTM). LSTM compensates for the shortcomings of AM in modeling SDF, and exponential smoothing is adopted to train a lightweight model. Specifically, the SDF is divided into aggregated encoding feature (AEF) and aggregated original feature (AOF). AEF is obtained by the encoder which includes a novel soft attention mechanism and an LSTM network. To prevent losing useful information during the encoding process, the second attention layer aggregates the original sensor signal to obtain AOF. Finally, the decoder LSTM network combines AEF with AOF and calculates RUL based on a weighting average method. Extensive experiments are conducted on the C-MAPSS dataset to verify model effectiveness. The results show the superiority of DA-LSTM in prediction accuracy and computational quantity.

Suggested Citation

  • Shi, Jiayu & Zhong, Jingshu & Zhang, Yuxuan & Xiao, Bin & Xiao, Lei & Zheng, Yu, 2024. "A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007354
    DOI: 10.1016/j.ress.2023.109821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.