IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp103-115.html
   My bibliography  Save this article

Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data

Author

Listed:
  • Li, Yanting
  • Jiang, Wenbo
  • Zhang, Guangyao
  • Shu, Lianjie

Abstract

Condition monitoring and fault diagnosis for wind turbines can effectively reduce the impact of failures. However, many wind turbines cannot establish fault diagnosis models due to insufficient data. The operational data of similar wind turbines usually contain some universal information about failure properties. In order to make full use of these useful information, a fault diagnosis method based on parameter-based transfer learning and convolutional autoencoder (CAE) for wind turbines with small-scale data is proposed in this paper. The proposed method can transfer knowledge from similar wind turbines to the target wind turbine. The performance of the proposed method is analyzed and compared to other transfer/non-transfer methods. The comparison results show that the proposed method has advantages in diagnosing faults for wind turbines with small-scale data.

Suggested Citation

  • Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:103-115
    DOI: 10.1016/j.renene.2021.01.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenxin Yu & Shoudao Huang & Weihong Xiao, 2018. "Fault Diagnosis Based on an Approach Combining a Spectrogram and a Convolutional Neural Network with Application to a Wind Turbine System," Energies, MDPI, vol. 11(10), pages 1-11, September.
    2. Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
    3. Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
    4. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    5. Gao, Q.W. & Liu, W.Y. & Tang, B.P. & Li, G.J., 2018. "A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine," Renewable Energy, Elsevier, vol. 116(PA), pages 169-175.
    6. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    7. Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
    8. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
    2. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    3. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    4. Stefan Jonas & Dimitrios Anagnostos & Bernhard Brodbeck & Angela Meyer, 2023. "Vibration Fault Detection in Wind Turbines Based on Normal Behaviour Models without Feature Engineering," Energies, MDPI, vol. 16(4), pages 1-16, February.
    5. Shujie Yang & Peikun Yang & Hao Yu & Jing Bai & Wuwei Feng & Yuxiang Su & Yulin Si, 2022. "A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment," Energies, MDPI, vol. 15(9), pages 1-16, May.
    6. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    7. Jin, Zhenglei & Xu, Qifa & Jiang, Cuixia & Wang, Xiangxiang & Chen, Hao, 2023. "Ordinal few-shot learning with applications to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 206(C), pages 1158-1169.
    8. Peng Jieyang & Andreas Kimmig & Wang Dongkun & Zhibin Niu & Fan Zhi & Wang Jiahai & Xiufeng Liu & Jivka Ovtcharova, 2023. "A systematic review of data-driven approaches to fault diagnosis and early warning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3277-3304, December.
    9. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    10. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    11. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    12. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    13. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    14. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    15. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
    2. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Mingzhu Tang & Qi Zhao & Steven X. Ding & Huawei Wu & Linlin Li & Wen Long & Bin Huang, 2020. "An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes," Energies, MDPI, vol. 13(4), pages 1-16, February.
    4. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    5. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    6. Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
    7. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    8. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    10. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    11. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    12. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    13. Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
    14. K. N. Ravikumar & Suhas S. Aralikatti & Hemantha Kumar & G. N. Kumar & K. V. Gangadharan, 2022. "Fault diagnosis of antifriction bearing in internal combustion engine gearbox using data mining techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1121-1134, June.
    15. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    16. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    17. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
    18. Zhannan Guo & Yinlin Hao & Hanwen Shi & Zhenyu Wu & Yuhu Wu & Ximing Sun, 2023. "A Fault Diagnosis Algorithm for the Dedicated Equipment Based on the CNN-LSTM Mechanism," Energies, MDPI, vol. 16(13), pages 1-16, July.
    19. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    20. Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:103-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.