Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.09.070
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
- Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
- Orlando, Andrea & Pagnini, Luisa & Repetto, Maria Pia, 2021. "Structural response and fatigue assessment of a small vertical axis wind turbine under stationary and non-stationary excitation," Renewable Energy, Elsevier, vol. 170(C), pages 251-266.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
- Qian, Peng & Zhang, Dahai & Tian, Xiange & Si, Yulin & Li, Liangbi, 2019. "A novel wind turbine condition monitoring method based on cloud computing," Renewable Energy, Elsevier, vol. 135(C), pages 390-398.
- Yao Li & Caichao Zhu, 2018. "Reliability Analysis of Wind Turbines," Chapters, in: Kenneth Eloghene Okedu (ed.), Stability Control and Reliable Performance of Wind Turbines, IntechOpen.
- Jia, Xiaodong & Jin, Chao & Buzza, Matt & Wang, Wei & Lee, Jay, 2016. "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, Elsevier, vol. 99(C), pages 1191-1201.
- Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
- Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
- Alvarez, Eduardo J. & Ribaric, Adrijan P., 2018. "An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA," Renewable Energy, Elsevier, vol. 115(C), pages 391-399.
- Ruiz de la Hermosa González-Carrato, Raúl, 2017. "Sound and vibration-based pattern recognition for wind turbines driving mechanisms," Renewable Energy, Elsevier, vol. 109(C), pages 262-274.
- Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
- Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
- Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
- Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
- Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
- Urmeneta, Jon & Izquierdo, Juan & Leturiondo, Urko, 2023. "A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 281-292.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
- de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
- Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
- Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
- Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Han, Chaoshuai & Liu, Kun & Ma, Yongliang & Qin, Peijiang & Zou, Tao, 2021. "Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads," Renewable Energy, Elsevier, vol. 169(C), pages 1252-1264.
- Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
- Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
- Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
- Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
More about this item
Keywords
Wind turbine; Deep learning; Fuzzy synthetic; Condition monitoring; Fault diagnosis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1167-1176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.