IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp1191-1201.html

Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves

Author

Listed:
  • Jia, Xiaodong
  • Jin, Chao
  • Buzza, Matt
  • Wang, Wei
  • Lee, Jay

Abstract

Prognostics and Health Management (PHM) can offer substantial improvements in reliability and availability of the wind turbine asset. Driven by reducing the Operation and Maintenance (O&M) cost of wind turbines, many research efforts have been conducted to realize reliable wind turbine performance degradation assessment. Despite these efforts, it is still challenging to assess the actual degradation trend of wind turbine which will be suitable for prediction analysis. In this study, a novel similarity metric for machine performance curves is proposed and a framework of wind turbine performance assessment methodology is presented. The proposed algorithm evaluates the health condition of wind turbine by performing principal component analysis on the quasi-linear region of the power curve. The proposed methodology has been validated on a dataset collected from a large scale onshore wind turbine for a period of two years. The result exhibits a gradual degradation trend of wind turbine and indicates the ability of proposed approach to trend and assess the turbine degradation before downtime happens. The result from the proposed method also reveals its robustness to wind resolution in the power curve, which still exhibits a very similar degradation trend when the wind resolution of power curve has been down sampled.

Suggested Citation

  • Jia, Xiaodong & Jin, Chao & Buzza, Matt & Wang, Wei & Lee, Jay, 2016. "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, Elsevier, vol. 99(C), pages 1191-1201.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1191-1201
    DOI: 10.1016/j.renene.2016.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    2. Lapira, Edzel & Brisset, Dustin & Davari Ardakani, Hossein & Siegel, David & Lee, Jay, 2012. "Wind turbine performance assessment using multi-regime modeling approach," Renewable Energy, Elsevier, vol. 45(C), pages 86-95.
    3. D Lin & D Banjevic & A K S Jardine, 2006. "Using principal components in a proportional hazards model with applications in condition-based maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 910-919, August.
    4. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mo, Huadong & Sansavini, Giovanni, 2019. "Impact of aging and performance degradation on the operational costs of distributed generation systems," Renewable Energy, Elsevier, vol. 143(C), pages 426-439.
    2. Suárez-Cetrulo, Andrés L. & Burnham-King, Lauren & Haughton, David & Carbajo, Ricardo Simón, 2022. "Wind power forecasting using ensemble learning for day-ahead energy trading," Renewable Energy, Elsevier, vol. 191(C), pages 685-698.
    3. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    4. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
    5. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Li, Wenzhe & Hsu, Yuan-Ming & Lee, Jay, 2020. "Gaussian Process Regression for numerical wind speed prediction enhancement," Renewable Energy, Elsevier, vol. 146(C), pages 2112-2123.
    6. John Thomas Lyons & Tuhfe Göçmen, 2021. "Applied Machine Learning Techniques for Performance Analysis in Large Wind Farms," Energies, MDPI, vol. 14(13), pages 1-28, June.
    7. Usama Aziz & Sylvie Charbonnier & Christophe Berenguer & Alexis Lebranchu & Frederic Prevost, 2022. "A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods," Energies, MDPI, vol. 15(8), pages 1-21, April.
    8. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Yang, Qibo & Hsu, Yuan-Ming & Chen, Yudi & Lee, Jay, 2019. "A combined filtering strategy for short term and long term wind speed prediction with improved accuracy," Renewable Energy, Elsevier, vol. 136(C), pages 1082-1090.
    9. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    10. Rubert, T. & McMillan, D. & Niewczas, P., 2018. "A decision support tool to assist with lifetime extension of wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 423-433.
    11. Junxun Chen & Longsheng Cheng & Hui Yu & Shaolin Hu, 2018. "Rolling bearing fault diagnosis and health assessment using EEMD and the adjustment Mahalanobis–Taguchi system," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 147-159, January.
    12. Tucker, Swatara & Indrawan, Natarianto & Shadle, Lawrence J. & Harun, Nor Farida & Tucker, David, 2024. "Performance degradation in an advanced power system by analyzing process dynamics," Applied Energy, Elsevier, vol. 369(C).
    13. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    14. Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
    15. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    16. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    17. Soszyńska-Budny Joanna & Chmielewski Mariusz & Pioch Joanna, 2023. "Reliability of Renewable Power Generation using the Example of Offshore Wind Farms," Folia Oeconomica Stetinensia, Sciendo, vol. 23(1), pages 228-245, June.
    18. Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Li, Yanting & Wang, Peng & Wu, Zhenyu & Su, Yan, 2024. "Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison," Renewable Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    2. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    3. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    4. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    5. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    6. Tomohiro Ando & Ruey S. Tsay, 2014. "A Predictive Approach for Selection of Diffusion Index Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 68-99, June.
    7. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    8. Lacasa, Lucas & Marín-Rodríguez, F. Javier & Masuda, Naoki & Arola-Fernández, Lluís, 2025. "Scalar embedding of temporal network trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    9. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    10. Binge, Laurie H. & Boshoff, Willem H., 2020. "Economic uncertainty in South Africa," Economic Modelling, Elsevier, vol. 88(C), pages 113-131.
    11. Guilan Kong & Lili Jiang & Xiaofeng Yin & Tianbing Wang & Dong-Ling Xu & Jian-Bo Yang & Yonghua Hu, 2018. "Combining principal component analysis and the evidential reasoning approach for healthcare quality assessment," Annals of Operations Research, Springer, vol. 271(2), pages 679-699, December.
    12. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
    13. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    14. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    15. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    16. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    17. Ionela Munteanu & Adriana Grigorescu & Elena Condrea & Elena Pelinescu, 2020. "Convergent Insights for Sustainable Development and Ethical Cohesion: An Empirical Study on Corporate Governance in Romanian Public Entities," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    18. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    19. Daniel Boss & Annick Hoffmann & Benjamin Rappaz & Christian Depeursinge & Pierre J Magistretti & Dimitri Van de Ville & Pierre Marquet, 2012. "Spatially-Resolved Eigenmode Decomposition of Red Blood Cells Membrane Fluctuations Questions the Role of ATP in Flickering," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1191-1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.