IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v74y2014icp95-109.html
   My bibliography  Save this article

TVICA—Time varying independent component analysis and its application to financial data

Author

Listed:
  • Chen, Ray-Bing
  • Chen, Ying
  • Härdle, Wolfgang K.

Abstract

A new method of ICA, TVICA, is proposed. Compared to the conventional ICA, the TVICA method allows the mixing matrix to be time dependent. Estimation is conducted under local homogeneity that assumes at any particular time point, there exists an interval over which the mixing matrix can be well approximated as constant. A sequential log likelihood-ratio testing procedure is used to automatically identify such local intervals. Numerical analysis demonstrates that TVICA provides good performance in homogeneous situations and does improve accuracy in nonstationary settings with possible structural change. In real data analysis with application to risk management, the TVICA confirms a superior performance when compared to several alternatives, including ICA, PCA and DCC-based models.

Suggested Citation

  • Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
  • Handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:95-109
    DOI: 10.1016/j.csda.2014.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000127
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
    2. Lee, Seonjoo & Shen, Haipeng & Truong, Young & Lewis, Mechelle & Huang, Xuemei, 2011. "Independent Component Analysis Involving Autocorrelated Sources With an Application to Functional Magnetic Resonance Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1009-1024.
    3. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    4. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 594-616.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    7. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    8. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    9. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    10. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    11. Chen, Ying & Härdle, Wolfgang & Spokoiny, Vladimir, 2010. "GHICA -- Risk analysis with GH distributions and independent components," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 255-269, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saima Afzal & Muhammad Mutahir Iqbal, 2016. "A new way to order independent components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1753-1764, July.
    2. Chen, Ying & Niu, Linlin & Chen, Ray-Bing & He, Qiang, 2019. "Sparse-Group Independent Component Analysis with application to yield curves prediction," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 76-89.
    3. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    2. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    3. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    4. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    5. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    6. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.
    7. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    8. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    9. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    10. Sang Hoon Kang & Seong-Min Yoon, 2010. "Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns," Korean Economic Review, Korean Economic Association, vol. 26, pages 431-451.
    11. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    12. Su, EnDer, 2013. "Stock index hedge using trend and volatility regime switch model considering hedging cost," MPRA Paper 49190, University Library of Munich, Germany.
    13. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    14. Mesias Alfeus & Ludger Overbeck, 2018. "Regime Switching Rough Heston Model," Research Paper Series 387, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Nektarios Aslanidis & Denise R. Osborn & Marianne Sensier, 2008. "Co-movements between US and UK stock prices: the roles of macroeconomic information and time-varying conditional correlations," Centre for Growth and Business Cycle Research Discussion Paper Series 96, Economics, The University of Manchester.
    16. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    17. Giampiero Gallo & Edoardo Otranto, 2006. "Volatility Transmission Across Markets: A Multi-Chain Markov Switching Model," Econometrics Working Papers Archive wp2006_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    18. Ahmed BenSaïda, 2021. "The Good and Bad Volatility: A New Class of Asymmetric Heteroskedastic Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 540-570, April.
    19. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    20. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    21. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:95-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.