IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0307002.html
   My bibliography  Save this paper

The Contagion Effect Between the Volatilities of the NASDAQ-100 and the IT.CA :A Univariate and A Bivariate Switching Approach

Author

Listed:
  • Ryan Lemand

    (ECOLE NORMALE SUPERIEURE DE CACHAN)

Abstract

This article uses models with changes in regime and conditional variance to show the presence of co-movement between the American and the French New Technology indexes, the NASDAQ-100 and the IT.CAC respectively. For the past two years, American and French New Technology stock markets have been fluctuating severely, and it has been observed that the IT.CAC is considerably affected by the NASDAQ- 100. In the first part of this article, we study the volatilities of those two IT indexes, using univariate conditional variance and changes in regime models. We show that the volatilities of the two indexes have considerably increased exhibiting a certain level of correlation. We find signs of a co-movement effect between the volatilities of the NASDAQ-100 and the IT.CAC. The hypothesis of a co-movement effect is discussed in the second part of this article, using a bivariate SWARCH model to show the dependence of the high and low volatility states of the IT.CAC on the NASDAQ-100, with no intermediate simultaneous high-low volatility states.

Suggested Citation

  • Ryan Lemand, 2003. "The Contagion Effect Between the Volatilities of the NASDAQ-100 and the IT.CA :A Univariate and A Bivariate Switching Approach," Econometrics 0307002, University Library of Munich, Germany, revised 07 Dec 2020.
  • Handle: RePEc:wpa:wuwpem:0307002
    Note: Type of Document - PDF; prepared on PC-LaTeX; to print on any;
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0307/0307002.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.
    4. William Schwert, G., 2002. "Stock volatility in the new millennium: how wacky is Nasdaq?," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 3-26, January.
    5. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    6. Simon van Norden & Robert Vigfusson, 1996. "Regime-Switching Models, A guide to the Bank of Canada Gauss Procedures," Staff Working Papers 96-3, Bank of Canada.
    7. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    8. Baillie, Richard T. & DeGennaro, Ramon P., 1990. "Stock Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(2), pages 203-214, June.
    9. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    10. Simon van Norden & Huntley Schaller & ), 1995. "Speculative Behaviour, Regime-Switching, and Stock Market Crashes," Econometrics 9502003, University Library of Munich, Germany.
    11. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    12. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415.
    13. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    14. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    15. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    16. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    17. Edwards, Sebastian & Susmel, Raul, 2001. "Volatility dependence and contagion in emerging equity markets," Journal of Development Economics, Elsevier, vol. 66(2), pages 505-532, December.
    18. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    19. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    20. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    21. Christian Francq & Jean-Michel Zakoïan, 1999. "Linear-Representations Based Estimation of Switching-Regime GARCH Models," Working Papers 99-57, Center for Research in Economics and Statistics.
    22. Gable, Jeff & van Norden, Simon & Vigfusson, Robert, 1997. "Analytical Derivatives for Markov Switching Models," Computational Economics, Springer;Society for Computational Economics, vol. 10(2), pages 187-194, May.
    23. Massimiliano Cecconi & Giampiero M. Gallo & Marco J. Lombardi, 2002. "GARCH-based Volatility Forecasts for Market Volatility Indices," Econometrics Working Papers Archive wp2002_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    24. Engle, Robert F. & Mustafa, Chowdhury, 1992. "Implied ARCH models from options prices," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 289-311.
    25. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    26. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    27. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    28. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    29. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    30. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    31. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan Lemand, 2003. "New Technology Stock Market Indexes Contagion: A VAR-dccMVGARCH Approach," Econometrics 0307003, University Library of Munich, Germany, revised 07 Dec 2020.
    2. Ryan Lemand, 2003. "Should Stock Market Indexes Time Varying Correlations Be Taken Into Account? A Conditional Variance Multivariate Approach," Econometrics 0307004, University Library of Munich, Germany, revised 07 Dec 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan Lemand, 2003. "Should Stock Market Indexes Time Varying Correlations Be Taken Into Account? A Conditional Variance Multivariate Approach," Econometrics 0307004, University Library of Munich, Germany, revised 07 Dec 2020.
    2. Ryan Lemand, 2003. "New Technology Stock Market Indexes Contagion: A VAR-dccMVGARCH Approach," Econometrics 0307003, University Library of Munich, Germany, revised 07 Dec 2020.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    5. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    8. Sean D. Campbell, 2002. "Specification Testing and Semiparametric Estimation of Regime Switching Models: An Examination of the US Short Term Interest Rate," Working Papers 2002-26, Brown University, Department of Economics.
    9. King, Daniel & Botha, Ferdi, 2015. "Modelling stock return volatility dynamics in selected African markets," Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
    10. Vanden, Joel M., 2005. "Equilibrium analysis of volatility clustering," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 374-417, June.
    11. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    12. Bae, Jinho & Kim, Chang-Jin & Nelson, Charles R., 2007. "Why are stock returns and volatility negatively correlated?," Journal of Empirical Finance, Elsevier, vol. 14(1), pages 41-58, January.
    13. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    14. Aloui, Chaker & Jammazi, Rania, 2009. "The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach," Energy Economics, Elsevier, vol. 31(5), pages 789-799, September.
    15. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," Harvard Institute of Economic Research Working Papers 1999, Harvard - Institute of Economic Research.
    16. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    17. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    18. Morana, Claudio & Beltratti, Andrea, 2002. "The effects of the introduction of the euro on the volatility of European stock markets," Journal of Banking & Finance, Elsevier, vol. 26(10), pages 2047-2064, October.
    19. Bohl, Martin T. & Brzeszczynski, Janusz & Wilfling, Bernd, 2009. "Institutional investors and stock returns volatility: Empirical evidence from a natural experiment," Journal of Financial Stability, Elsevier, vol. 5(2), pages 170-182, June.
    20. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.

    More about this item

    Keywords

    Conditional Variance; Regime Changes; New Technologies; Contagion; Volatility.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0307002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.