IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v20y2002i3p351-62.html
   My bibliography  Save this article

A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations

Author

Listed:
  • Tse, Y K
  • Tsui, Albert K C

Abstract

In this article we propose a new multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model with time-varying correlations. We adopt the vech representation based on the conditional variances and the conditional correlations. Whereas each conditional-variance term is assumed to follow a univariate GARCH formulation, the conditional-correlation matrix is postulated to follow an autoregressive moving average type of analog. Our new model retains the intuition and interpretation of the univariate GARCH model and yet satisfies the positive-definite condition as found in the constant-correlation and Baba-Engle-Kraft-Kroner models. We report some Monte Carlo results on the finite-sample distributions of the maximum likelihood estimate of the varying-correlation MGARCH model. The new model is applied to some real data sets.

Suggested Citation

  • Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
  • Handle: RePEc:bes:jnlbes:v:20:y:2002:i:3:p:351-62
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:20:y:2002:i:3:p:351-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.