IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp334-348.html
   My bibliography  Save this article

Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure

Author

Listed:
  • Huerta Herraiz, Álvaro
  • Pliego Marugán, Alberto
  • García Márquez, Fausto Pedro

Abstract

The size and the complexity of photovoltaic solar power plants are increasing, and it requires an advanced and robust condition monitoring systems for ensuring their reliability. This paper proposes a novel method for faults detection in photovoltaic panels employing a thermographic camera embedded in an unmanned aerial vehicle. The large amount of data generated by these systems must be processed and analyzed. This paper presents a novel approach to identify panels to detect hot spots, and to set their locations. Two novels region-based convolutional neural networks are unified to generate a robust detection structure. The main contribution is the combination of thermography and telemetry data to provide a response of the panel condition monitoring. The data are acquired and then automatically processed, allowing fault detection during the inspection. A detailed description of the methodology is presented, including the different stages to build the neural networks, i.e. the training process, the acquisition and processing of data and the outcomes generation. A thermographic inspection of a real photovoltaic solar plant is done to validate the proposed methodology. The accuracy, the efficiency and the performance of the approach under different real scenarios are evaluated statistically obtaining satisfactory results.

Suggested Citation

  • Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:334-348
    DOI: 10.1016/j.renene.2020.01.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsanakas, John A. & Ha, Long D. & Al Shakarchi, F., 2017. "Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery," Renewable Energy, Elsevier, vol. 102(PA), pages 224-233.
    2. Diego Pedregal & Fausto García & Clive Roberts, 2009. "An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions," Annals of Operations Research, Springer, vol. 166(1), pages 109-124, February.
    3. Fausto Pedro García Márquez & Diego J. Pedregal & Clive Roberts, 2015. "New methods for the condition monitoring of level crossings," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 878-884, April.
    4. Alberto Pliego Marugán & Fausto Pedro García Márquez & Benjamin Lev, 2017. "Optimal decision-making via binary decision diagrams for investments under a risky environment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5271-5286, September.
    5. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    6. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    7. Alberto Pliego Marugán & Fausto Pedro García Márquez & Jesús María Pinar Pérez, 2016. "Optimal Maintenance Management of Offshore Wind Farms," Energies, MDPI, vol. 9(1), pages 1-20, January.
    8. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    9. Han, Changwoon & Lee, Hyeonseok, 2019. "A field-applicable health monitoring method for photovoltaic system," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 219-227.
    10. Faza, Ayman, 2018. "A probabilistic model for estimating the effects of photovoltaic sources on the power systems reliability," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Souza & Ricardo Santos & Erlandson Saraiva, 2022. "A Log-Logistic Predictor for Power Generation in Photovoltaic Systems," Energies, MDPI, vol. 15(16), pages 1-16, August.
    2. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    3. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    4. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    5. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    6. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    7. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan, 2020. "An Online Novel Two-Layered Photovoltaic Fault Monitoring Technique Based Upon the Thermal Signatures," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    8. Wei-Hsiang Chiang & Han-Sheng Wu & Jong-Shinn Wu & Shiow-Jyu Lin, 2022. "A Method for Estimating On-Field Photovoltaics System Efficiency Using Thermal Imaging and Weather Instrument Data and an Unmanned Aerial Vehicle," Energies, MDPI, vol. 15(16), pages 1-12, August.
    9. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Qu, Jiaqi & Qian, Zheng & Pei, Yan & Wei, Lu & Zareipour, Hamidreza & Sun, Qiang, 2022. "An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection," Applied Energy, Elsevier, vol. 319(C).
    11. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    12. Di Tommaso, Antonio & Betti, Alessandro & Fontanelli, Giacomo & Michelozzi, Benedetto, 2022. "A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 193(C), pages 941-962.
    13. Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
    14. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Gabriella-Stefánia Szabó & Róbert Szabó & Loránd Szabó, 2022. "A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels," Energies, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    2. Arcos Jiménez, Alfredo & Zhang, Long & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2020. "Maintenance management based on Machine Learning and nonlinear features in wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 316-328.
    3. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    5. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    6. Arcos Jiménez, Alfredo & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2019. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 2-12.
    7. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    8. Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2016. "A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines," Energies, MDPI, vol. 9(1), pages 1-14, January.
    9. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    10. Kisvari, Adam & Lin, Zi & Liu, Xiaolei, 2021. "Wind power forecasting – A data-driven method along with gated recurrent neural network," Renewable Energy, Elsevier, vol. 163(C), pages 1895-1909.
    11. Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
    12. Fausto Pedro García Marquez & Carlos Quiterio Gómez Muñoz, 2020. "A New Approach for Fault Detection, Location and Diagnosis by Ultrasonic Testing," Energies, MDPI, vol. 13(5), pages 1-13, March.
    13. Ana María Peco Chacón & Isaac Segovia Ramírez & Fausto Pedro García Márquez, 2020. "False Alarms Analysis of Wind Turbine Bearing System," Sustainability, MDPI, vol. 12(19), pages 1-11, September.
    14. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    15. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    16. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    18. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    19. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    20. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:334-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.