IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p7039-d586525.html
   My bibliography  Save this article

Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China

Author

Listed:
  • Laihao Ma

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China)

  • Xiaoxue Ma

    (Public Administration and Humanities College, Dalian Maritime University, Dalian 116026, China)

  • Jingwen Zhang

    (Public Administration and Humanities College, Dalian Maritime University, Dalian 116026, China)

  • Qing Yang

    (Public Administration and Humanities College, Dalian Maritime University, Dalian 116026, China)

  • Kai Wei

    (Public Administration and Humanities College, Dalian Maritime University, Dalian 116026, China)

Abstract

Safety of the hazardous chemicals road transportation system (HCRTS) is an important, complex, social, and environmental sensitive problem. The complexity, dynamics, and multi-link features of HCRTS have made it necessary to think beyond traditional risk analysis methods. Based on the relevant literature, Functional Resonance Analysis Method (FRAM) is a relatively new systemic method for modeling and analyzing complex socio-technical systems. In this study, a methodology that integrates FRAM, fuzzy sets, and risk matrix is presented to quantitatively assess the risks factors representing failure function links in HCRTS. As the strength of function links can be illustrated by the RI (risk index) of risk factors identified in failure function links, 32 risk factors representing 12 failure function links were first identified by accident causes analysis and the framework of FRAM. Fuzzy sets were then utilized to calculate the weight of the likelihood and consequence of the risk factors. Finally, according to the assessment results of the identified risk factors by a two-dimensional risk matrix, the weaker function links in the whole HCRTS chain were identified. HCs road companies, regulatory authorities, relevant practitioners, and other stakeholders should pay more attention to these links.

Suggested Citation

  • Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:7039-:d:586525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/7039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/7039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    2. Qi Zhang & Yuanqiao Wen & Chunhui Zhou & Hai Long & Dong Han & Fan Zhang & Changshi Xiao, 2019. "Construction of Knowledge Graphs for Maritime Dangerous Goods," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    5. Nijole Batarliene, 2020. "Essential Safety Factors for the Transport of Dangerous Goods by Road: A Case Study of Lithuania," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    6. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "A Methodology for Dynamic Assessment of Laboratory Safety by SEM-SD," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    7. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    8. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    9. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    10. Noguchi, H. & Hienuki, S. & Fuse, M., 2020. "Network theory-based accident scenario analysis for hazardous material transport: A case study of liquefied petroleum gas transport in japan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dingding Yang & Yu Zheng & Kai Peng & Lidong Pan & Juan Zheng & Baojing Xie & Bohong Wang, 2022. "Characteristics and Statistical Analysis of Large and above Hazardous Chemical Accidents in China from 2000 to 2020," IJERPH, MDPI, vol. 19(23), pages 1-27, November.
    2. Ruiwen Fan & Zhangyin Dai & Qing Xue & Shixiang Tian, 2022. "Analysis of Accidents of Mobile Hazardous Sources on Expressways from 2018 to 2021," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    3. Weiliang Qiao & Enze Huang & Hongtongyang Guo & Yang Liu & Xiaoxue Ma, 2022. "Barriers Involved in the Safety Management Systems: A Systematic Review of Literature," IJERPH, MDPI, vol. 19(15), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Li, Guoqi & Pu, Gang & Yang, Jiaxin & Jiang, Xinguo, 2024. "A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    6. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    8. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    9. Irina Vinogradova-Zinkevič, 2021. "Application of Bayesian Approach to Reduce the Uncertainty in Expert Judgments by Using a Posteriori Mean Function," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    10. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    11. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Ogbeide, Henry & Thomson, Mary Elizabeth & Gonul, Mustafa Sinan & Pollock, Andrew Castairs & Bhowmick, Sanjay & Bello, Abdullahi Usman, 2023. "The anti-money laundering risk assessment: A probabilistic approach," Journal of Business Research, Elsevier, vol. 162(C).
    15. Rajesh Kumar Singh & Ayush Gupta, 2020. "Framework for sustainable maintenance system: ISM–fuzzy MICMAC and TOPSIS approach," Annals of Operations Research, Springer, vol. 290(1), pages 643-676, July.
    16. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Suo Qi & Wang Liyuan & Yao Tianzi & Wang Zihao, 2021. "Promoting Metro Operation Safety by Exploring Metro Operation Accident Network," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 455-468, August.
    18. Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
    19. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    20. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:7039-:d:586525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.