IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v189y2019icp218-231.html
   My bibliography  Save this article

Understanding railway operational accidents using network theory

Author

Listed:
  • Liu, Jintao
  • Schmid, Felix
  • Zheng, Wei
  • Zhu, Jiebei

Abstract

Learning from past accidents in railway operations is valuable for ensuring the future safety of railway operations. Railway operational accidents are of different types, such as collisions and derailments. Different types of railway operational accidents are related to each other due to the interactions between hazards leading to accidents. It is useful to explore the nature of accidents as a set. In this paper, a new network theory-based approach to understanding railway operational accidents is proposed, which aims to reveal latent patterns of hazards from an overall high-level perspective. This approach serves as a complement to conventional network theory-based analyses. Its originality is in the customization of a topological analysis for studying accidents, with several tailored indicators adapting to the characteristics of railway operational accidents. It also provides a practical way to extract and construct the accident causation network from numerous accident investigation reports. The outcomes of this approach could assist railway operators in formulating more targeted accident prevention strategies and approaches. The method has been applied to real railway operational accidents in the UK. The results show that the proposed approach is effective and practical in terms of capturing important causes of accidents and revealing latent rules of railway operational accidents.

Suggested Citation

  • Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
  • Handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:218-231
    DOI: 10.1016/j.ress.2019.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018314480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    2. Yoon, Young Sik & Ham, Dong-Han & Yoon, Wan Chul, 2016. "Application of activity theory to analysis of human-related accidents: Method and case studies," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 22-34.
    3. Abrahamsen, Håkon Bjorheim & Abrahamsen, Eirik Bjorheim & Høyland, Sindre, 2016. "On the need for revising healthcare failure mode and effect analysis for assessing potential for patient harm in healthcare processes," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 160-168.
    4. Belmonte, Fabien & Schön, Walter & Heurley, Laurent & Capel, Robert, 2011. "Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: An application to railway trafficsupervision," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 237-249.
    5. Peeters, J.F.W. & Basten, R.J.I. & Tinga, T., 2018. "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 36-44.
    6. Kvaløy, J.T. & Aven, T., 2005. "An alternative approach to trend analysis in accident data," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 75-82.
    7. Theophilus, Stephen C. & Esenowo, Victor N. & Arewa, Andrew O. & Ifelebuegu, Augustine O. & Nnadi, Ernest O. & Mbanaso, Fredrick U., 2017. "Human factors analysis and classification system for the oil and gas industry (HFACS-OGI)," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 168-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wencheng & Zhang, Rui & Xu, Minhao & Yu, Yaocheng & Xu, Yifei & De Dieu, Gatesi Jean, 2020. "Risk state changes analysis of railway dangerous goods transportation system: Based on the cusp catastrophe model," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    4. Suo Qi & Wang Liyuan & Yao Tianzi & Wang Zihao, 2021. "Promoting Metro Operation Safety by Exploring Metro Operation Accident Network," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 455-468, August.
    5. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Cuiping Ren & Bianbian Chen & Fengjie Xie & Xuan Zhao & Jiaqian Zhang & Xueyan Zhou, 2022. "Understanding Hazardous Materials Transportation Accidents Based on Higher-Order Network Theory," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    9. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    3. Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    5. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    6. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    8. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Ievgen Babeshko & Oleg Illiashenko & Vyacheslav Kharchenko & Kostiantyn Leontiev, 2022. "Towards Trustworthy Safety Assessment by Providing Expert and Tool-Based XMECA Techniques," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    10. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    11. Benjamin Cabanes & Stéphane Hubac & Pascal Le Masson & Benoit Weil, 2021. "Improving reliability engineering in product development based on design theory: the case of FMEA in the semiconductor industry," Post-Print hal-03143866, HAL.
    12. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    13. Zhi-Jiao Du & Zhi-Xiang Chen & Su-Min Yu, 2021. "Improved Failure Mode and Effect Analysis: Implementing Risk Assessment and Conflict Risk Mitigation with Probabilistic Linguistic Information," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    14. Puisa, Romanas & Montewka, Jakub & Krata, Przemyslaw, 2023. "A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Huiyue Diao & Majid Ghorbani, 2018. "Production risk caused by human factors: a multiple case study of thermal power plants," Frontiers of Business Research in China, Springer, vol. 12(1), pages 1-27, December.
    16. Zhou, Jian-Lan & Lei, Yi & Chen, Yang, 2019. "A hybrid HEART method to estimate human error probabilities in locomotive driving process," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 80-89.
    17. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching, 2019. "A novel failure mode and effect analysis model for machine tool risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 173-183.
    18. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    19. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    20. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:218-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.