IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021005494.html
   My bibliography  Save this article

A new approach for risk assessment of failure modes considering risk interaction and propagation effects

Author

Listed:
  • Wang, Qun
  • Jia, Guozhu
  • Jia, Yuning
  • Song, Wenyan

Abstract

Failure Mode and Effect Analysis (FMEA) is an efficient method for risk prevention and control, which has been applied to identify the potential risks and improve system reliability in various fields. Nevertheless, few attempts in previous research have been made to examine the impacts of the interactions among the failure modes on risk priority, which will influence the risk priority accuracy. To solve this problem, we propose a novel method to improve the conventional FMEA approaches. The proposed method not only considers the positive and negative influences of failure modes, but also the attenuation effect of such influences in the system. In addition, different from the previous FMEA approaches assuming that all failure modes play equally important roles in risk propagation, the new FMEA method considers the initial strength effect of failure mode on the risk propagation to ensure the accuracy of the risk priority. The final risk priority of a failure mode is computed recursively by the PageRank algorithm, which considers the effect of risk priority of other failure modes associated with this failure mode. Finally, to verify the effectiveness of the proposed method, we apply it to a case study of failure mode effect analysis for smart bracelets.

Suggested Citation

  • Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005494
    DOI: 10.1016/j.ress.2021.108044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Zhang & Guanghui Zhou & Qi Lu & Fengtian Chang, 2017. "Graph-based knowledge reuse for supporting knowledge-driven decision-making in new product development," International Journal of Production Research, Taylor & Francis Journals, vol. 55(23), pages 7187-7203, December.
    2. Ding, Rui & Liu, Zehua & Xu, Jintao & Meng, Fanpeng & Sui, Yang & Men, Xinhong, 2021. "A novel approach for reliability assessment of residual heat removal system for HPR1000 based on failure mode and effect analysis, fault tree analysis, and fuzzy Bayesian network methods," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Benjamin Cabanes & Stéphane Hubac & Pascal Le Masson & Benoit Weil, 2021. "Improving reliability engineering in product development based on design theory: the case of FMEA in the semiconductor industry," Post-Print hal-03143866, HAL.
    4. Weizhong Wang & Xinwang Liu & Jindong Qin & Shuli Liu, 2019. "An extended generalized TODIM for risk evaluation and prioritization of failure modes considering risk indicators interaction," IISE Transactions, Taylor & Francis Journals, vol. 51(11), pages 1236-1250, November.
    5. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.
    6. Dariusz Banaś & Jerzy Michnik, 2019. "Evaluation of the Impact of Strategic Offers on the Financial and Strategic Health of the Company—A Soft System Dynamics Approach," Mathematics, MDPI, vol. 7(2), pages 1-20, February.
    7. Arash Geramian & Ajith Abraham & Mojtaba Ahmadi Nozari, 2019. "Fuzzy logic-based FMEA robust design: a quantitative approach for robustness against groupthink in group/team decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 57(5), pages 1331-1344, March.
    8. Kheybari, Siamak & Rezaie, Fariba Mahdi & Farazmand, Hadis, 2020. "Analytic network process: An overview of applications," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    9. Hu-Chen Liu & Jian-Xin You & Shouming Chen & Yi-Zeng Chen, 2016. "An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1027-1042, November.
    10. Zeshui Xu, 2009. "An Interactive Approach to Multiple Attribute Group Decision Making with Multigranular Uncertain Linguistic Information," Group Decision and Negotiation, Springer, vol. 18(2), pages 119-145, March.
    11. Seyed-Hosseini, S.M. & Safaei, N. & Asgharpour, M.J., 2006. "Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 872-881.
    12. Abrahamsen, Håkon Bjorheim & Abrahamsen, Eirik Bjorheim & Høyland, Sindre, 2016. "On the need for revising healthcare failure mode and effect analysis for assessing potential for patient harm in healthcare processes," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 160-168.
    13. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Liu, Peide & Li, Ying, 2021. "An improved failure mode and effect analysis method for multi-criteria group decision-making in green logistics risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Jesus Felix Bayta Valenzuela & Xiuju Fu & Gaoxi Xiao & Rick Siow Mong Goh, 2018. "A Network-Based Impact Measure for Propagated Losses in a Supply Chain Network Consisting of Resilient Components," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    16. Majid Baghery & Samuel Yousefi & Mustafa Jahangoshai Rezaee, 2018. "Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1803-1825, December.
    17. Michnik, Jerzy, 2013. "Weighted Influence Non-linear Gauge System (WINGS) – An analysis method for the systems of interrelated components," European Journal of Operational Research, Elsevier, vol. 228(3), pages 536-544.
    18. Peeters, J.F.W. & Basten, R.J.I. & Tinga, T., 2018. "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 36-44.
    19. Tsai, Sang-Bing & Yu, Jian & Ma, Li & Luo, Feng & Zhou, Jie & Chen, Quan & Xu, Lei, 2018. "A study on solving the production process problems of the photovoltaic cell industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3546-3553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2024. "Risk assessment of utility tunnels through risk interaction-based deep learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Shi, Wen & Zhou, Qing & Zhou, Yanju, 2023. "An efficient elementary effect-based method for sensitivity analysis in identifying main and two-factor interaction effects," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Martínez-Galán Fernández, Pablo & Guillén López, Antonio J. & Márquez, Adolfo Crespo & Gomez Fernández, Juan Fco. & Marcos, Jose Antonio, 2022. "Dynamic Risk Assessment for CBM-based adaptation of maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Hai, Nan & Gong, Daqing & Liu, Shifeng & Dai, Zixuan, 2022. "Dynamic coupling risk assessment model of utility tunnels based on multimethod fusion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Ferenc Bognár & Csaba Hegedűs, 2022. "Analysis and Consequences on Some Aggregation Functions of PRISM (Partial Risk Map) Risk Assessment Method," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
    12. Pol, Johannes C. & Kindermann, Paulina & van der Krogt, Mark G. & van Bergeijk, Vera M. & Remmerswaal, Guido & Kanning, Willem & Jonkman, Sebastiaan N. & Kok, Matthijs, 2023. "The effect of interactions between failure mechanisms on the reliability of flood defenses," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qun & Jia, Guozhu & Song, Wenyan, 2022. "Identifying critical factors in systems with interrelated components: A method considering heterogeneous influence and strength attenuation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 456-470.
    2. Li, Ying & Liu, Peide & Li, Gang, 2023. "An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Jalil Heidary Dahooie & Amir Salar Vanaki & Hamid Reza Firoozfar & Edmundas Kazimieras Zavadskas & Audrius Čereška, 2020. "An Extension of the Failure Mode and Effect Analysis with Hesitant Fuzzy Sets to Assess the Occupational Hazards in the Construction Industry," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    4. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    6. Jianghong Zhu & Bin Shuai & Rui Wang & Kwai-Sang Chin, 2019. "Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method," Mathematics, MDPI, vol. 7(6), pages 1-17, June.
    7. Dhalmahapatra, Krantiraditya & Garg, Ashish & Singh, Kritika & Xavier, Nirmal Francis & Maiti, J., 2022. "An integrated RFUCOM – RTOPSIS approach for failure modes and effects analysis: A case of manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Jing Xiao & Xiuli Wang & Hengjie Zhang, 2022. "Exploring the Ordinal Classifications of Failure Modes in the Reliability Management: An Optimization-Based Consensus Model with Bounded Confidences," Group Decision and Negotiation, Springer, vol. 31(1), pages 49-80, February.
    9. Tavana, Madjid & Khalili Nasr, Arash & Mina, Hassan & Michnik, Jerzy, 2022. "A private sustainable partner selection model for green public-private partnerships and regional economic development," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    10. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    11. Zhi-Jiao Du & Zhi-Xiang Chen & Su-Min Yu, 2021. "Improved Failure Mode and Effect Analysis: Implementing Risk Assessment and Conflict Risk Mitigation with Probabilistic Linguistic Information," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    12. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching, 2019. "A novel failure mode and effect analysis model for machine tool risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 173-183.
    13. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    14. Jia Huang & Hu-Chen Liu & Chun-Yan Duan & Ming-Shun Song, 2022. "An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method," Annals of Operations Research, Springer, vol. 312(1), pages 235-258, May.
    15. Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
    16. Liu, Peide & Li, Ying, 2021. "An improved failure mode and effect analysis method for multi-criteria group decision-making in green logistics risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.
    18. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.
    19. Bhattacharjee, Pushparenu & Dey, Vidyut & Mandal, U.K. & Paul, Susmita, 2022. "Quantitative risk assessment of submersible pump components using Interval number-based Multinomial Logistic Regression(MLR) model," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.