IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v223y2022ics0951832022000382.html
   My bibliography  Save this article

Dynamic Risk Assessment for CBM-based adaptation of maintenance planning

Author

Listed:
  • Martínez-Galán Fernández, Pablo
  • Guillén López, Antonio J.
  • Márquez, Adolfo Crespo
  • Gomez Fernández, Juan Fco.
  • Marcos, Jose Antonio

Abstract

This paper proposes a practical method for dynamic maintenance planning based on Dynamic Risk Assessment (DRA). This is founded on the interpretation, in terms of risk levels evolution, the available information of monitoring events and maintenance activities integrated in and that conform the condition-based maintenance (CBM) processes. DRA proposal is supported by ISO 31000 risk management framework in order to better understanding and results integration within other risk management approaches. Proposed method analyzes CBM results (monitoring events and maintenance activities) regarding their impact on failure risk level, and how to program and manage maintenance decision making (maintenance planning) regarding with dynamic risk evolution. This strategy not only helps maintenance management optimization but also facilitates the link of intelligent maintenance with global risk management within the organization, which is lined with modern Asset Management principles. To illustrate the method, an example of a real use case is presented where it is applied to the dynamic maintenance planning of a critical component in a high-speed train, and which integrates monitoring, predictive analytics and inspection data.

Suggested Citation

  • Martínez-Galán Fernández, Pablo & Guillén López, Antonio J. & Márquez, Adolfo Crespo & Gomez Fernández, Juan Fco. & Marcos, Jose Antonio, 2022. "Dynamic Risk Assessment for CBM-based adaptation of maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022000382
    DOI: 10.1016/j.ress.2022.108359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022000382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Wencheng & Zhang, Yue & Yin, Dezhi & Zuo, Borui & Liu, Zhanru, 2021. "Urban bus accident analysis: based on a Tropos Goal Risk-Accident Framework considering Learning From Incidents process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Redutskiy, Yury & Camitz-Leidland, Cecilie M. & Vysochyna, Anastasiia & Anderson, Kristanna T. & Balycheva, Marina, 2021. "Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Petchrompo, Sanyapong & Li, Hao & Erguido, Asier & Riches, Chris & Parlikad, Ajith Kumar, 2020. "A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Li, Wanhong & Liu, Guangzhong, 2022. "Dynamic failure mode analysis approach based on an improved Taguchi process capability index," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    6. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    7. Terje Aven & Enrico Zio, 2014. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1164-1172, July.
    8. Liu, Peide & Li, Ying, 2021. "An improved failure mode and effect analysis method for multi-criteria group decision-making in green logistics risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Shortridge, Julie & Aven, Terje & Guikema, Seth, 2017. "Risk assessment under deep uncertainty: A methodological comparison," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 12-23.
    10. Guo, Yongjin & Zhong, Mingjun & Gao, Chao & Wang, Hongdong & Liang, Xiaofeng & Yi, Hong, 2021. "A discrete-time Bayesian network approach for reliability analysis of dynamic systems with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "Precursors and startling lessons: Statistical analysis of 1250 events with safety significance from the civil nuclear sector," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    13. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    14. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    16. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
    17. Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Haugen, Stein & Vinnem, Jan Erik, 2015. "Perspectives on risk and the unforeseen," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 1-5.
    19. Adolfo Crespo Marquez & Juan Francisco Gomez Fernandez & Pablo Martínez-Galán Fernández & Antonio Guillen Lopez, 2020. "Maintenance Management through Intelligent Asset Management Platforms (IAMP). Emerging Factors, Key Impact Areas and Data Models," Energies, MDPI, vol. 13(15), pages 1-19, July.
    20. Parhizkar, Tarannom & Utne, Ingrid Bouwer & Vinnem, Jan Erik & Mosleh, Ali, 2021. "Supervised dynamic probabilistic risk assessment of complex systems, part 2: Application to risk-informed decision making, practice and results," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Xia, Liqiao & Liang, Yongshi & Leng, Jiewu & Zheng, Pai, 2023. "Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    3. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    4. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    5. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Hamed Taherdoost, 2021. "A Review on Risk Management in Information Systems: Risk Policy, Control and Fraud Detection," Post-Print hal-03741848, HAL.
    8. Guo, Yongjin & Wang, Hongdong & Guo, Yu & Zhong, Mingjun & Li, Qing & Gao, Chao, 2022. "System operational reliability evaluation based on dynamic Bayesian network and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Bhattacharjee, Pushparenu & Dey, Vidyut & Mandal, U.K. & Paul, Susmita, 2022. "Quantitative risk assessment of submersible pump components using Interval number-based Multinomial Logistic Regression(MLR) model," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Bożena Babiarz, 2018. "Aspects of Heat Supply Security Management Using Elements of Decision Theory," Energies, MDPI, vol. 11(10), pages 1-14, October.
    11. Tine Bizjak & Davor Kontić & Branko Kontić, 2022. "Practical Opportunities to Improve the Impact of Health Risk Assessment on Environmental and Public Health Decisions," IJERPH, MDPI, vol. 19(7), pages 1-18, April.
    12. Hoseyni, Seyed Mojtaba & Di Maio, Francesco & Zio, Enrico, 2019. "Condition-based probabilistic safety assessment for maintenance decision making regarding a nuclear power plant steam generator undergoing multiple degradation mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    16. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    17. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Manco, Pasquale & Rinaldi, Marta & Caterino, Mario & Fera, Marcello & Macchiaroli, Roberto, 2022. "Maintenance management for geographically distributed assets: a criticality-based approach," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    19. Jakeman, John D. & Kouri, Drew P. & Huerta, J. Gabriel, 2022. "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022000382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.