IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305603.html
   My bibliography  Save this article

Risk state changes analysis of railway dangerous goods transportation system: Based on the cusp catastrophe model

Author

Listed:
  • Huang, Wencheng
  • Zhang, Rui
  • Xu, Minhao
  • Yu, Yaocheng
  • Xu, Yifei
  • De Dieu, Gatesi Jean

Abstract

In this paper, the cusp catastrophe model is applied to analyze the railway dangerous goods transportation system risk state changes. Firstly, a Risk-Accident Catastrophe Tree is proposed to formulate the process that how the risk factors cause the accident. Secondly, the whole risk factors are classified into five categories including failure of human behavior, machine failure, transported materials, environment problems and management problems. Next, the cusp catastrophe model of railway dangerous goods transportation system is established, the Split Coefficient is defined to evaluate bifurcation set. The results of the case study show that the risk state changes of railway dangerous goods transportation system satisfy bimodality, inaccessibility, sudden transitions and divergence, but not satisfy hysteresis. The larger the Split Coefficient is, the easier the trajectory of system control point crosses with bifurcation sets. The reason of the system state changes from a safe state to a risk state is: as long as the trajectory of system control point crosses with bifurcation sets, there must be a cusp catastrophe in the system, and the system control point will cross the fold surface, which makes the risk energy increase sharply, the structure, information and energy of the system will also be destroyed.

Suggested Citation

  • Huang, Wencheng & Zhang, Rui & Xu, Minhao & Yu, Yaocheng & Xu, Yifei & De Dieu, Gatesi Jean, 2020. "Risk state changes analysis of railway dangerous goods transportation system: Based on the cusp catastrophe model," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305603
    DOI: 10.1016/j.ress.2020.107059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyriakidis, Miltos & Majumdar, Arnab & Ochieng, Washington Y., 2018. "The human performance railway operational index—a novel approach to assess human performance for railway operations," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 226-243.
    2. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    3. Jun Li & Hong Zhang & Yinshan Han & Baodong Wang, 2016. "Study on Failure of Third-Party Damage for Urban Gas Pipeline Based on Fuzzy Comprehensive Evaluation," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    4. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Acha-Daza, Jorge A. & Hall, Fred L., 1994. "Application of catastrophe theory to traffic flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 28(3), pages 235-250, June.
    6. Dou, Wenyu & Ghose, Sanjoy, 2006. "A dynamic nonlinear model of online retail competition using Cusp Catastrophe Theory," Journal of Business Research, Elsevier, vol. 59(7), pages 838-848, July.
    7. Diks, Cees & Wang, Juanxi, 2016. "Can a stochastic cusp catastrophe model explain housing market crashes?," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 68-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tibor Sipos & Zsombor Szabó & Mohammed Obaid & Árpád Török, 2023. "Disaster Risk Assessment Scheme—A Road System Survey for Budapest," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Wang, Yangpeng & Li, Shuxiang & Lee, Kangkuen & Tam, Hwayaw & Qu, Yuanju & Huang, Jingyin & Chu, Xianghua, 2023. "Accident risk tensor-specific covariant model for railway accident risk assessment and prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Suo Qi & Wang Liyuan & Yao Tianzi & Wang Zihao, 2021. "Promoting Metro Operation Safety by Exploring Metro Operation Accident Network," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 455-468, August.
    4. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    8. Bolgorian, Meysam, 2019. "Can a cusp catastrophe model describe the effect of sanctions on exchange rates?," Economics Discussion Papers 2019-2, Kiel Institute for the World Economy (IfW Kiel).
    9. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    10. Shao, Xiao-Feng, 2017. "Free or calculated shipping: Impact of delivery cost on supply chains moving to online retailing," International Journal of Production Economics, Elsevier, vol. 191(C), pages 267-277.
    11. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Dieci, Roberto & Schmitt, Noemi & Westerhoff, Frank, 2018. "Interactions between stock, bond and housing markets," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 43-70.
    13. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    14. Ruiz-Tagle, Andres & Lewis, Austin D. & Schell, Colin A. & Lever, Ernest & Groth, Katrina M., 2022. "BaNTERA: A Bayesian Network for Third-Party Excavation Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    16. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
    18. Xiao-jun Wang & Jian-yun Zhang & Xue-wei Tong & Shahid Shamsuddin & Rui-min He & Xing-hui Xia, 2014. "Mechanism and comprehensive countermeasure for drought management from the view of catastrophe theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 823-835, March.
    19. Sihan Huang & Guoxin Wang & Xiwen Shang & Yan Yan, 2018. "Reconfiguration point decision method based on dynamic complexity for reconfigurable manufacturing system (RMS)," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1031-1043, June.
    20. Tatsuhiro Shichijo & Emiko Fukuda, 2019. "A dynamic game analysis of Internet services with network externalities," Theory and Decision, Springer, vol. 86(3), pages 361-388, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.