IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001206.html
   My bibliography  Save this article

Railway operational hazard prediction and control based on knowledge graph embedding and topological analysis

Author

Listed:
  • Liu, Jintao
  • Ji, Lin
  • Chen, Keyi
  • Li, Chenling
  • Duan, Huayu

Abstract

Railway operational accidents usually result from the domino effects of a series of interrelated hazards. Predicting and controlling potential hazards in advance are valuable for ensuring safe railway operations. A variety of hazards form a heterogeneous hazard relationship network because of their complex interactions. The potential hazards can be predicted and controlled by use of such a relationship network structure. In this paper, a new knowledge graph-based hazard prediction and control approach is proposed, aiming to prevent railway operational accidents using the relationship network of hazards. Its originality is to leverage knowledge graph embedding and topological analysis to predict and control hazards, by means of both a novel convolutional architecture on hyperplanes and some tailored topological indicators. The outcomes of the proposed approach can offer railway operators the decision basis of accident prevention, in the form of potential hazards and their corresponding control measures. An application to the UK's railway accident data shows that 13.25 % and 4.38 % of hazard prediction accuracy gains in Hit@3 and Hit@10 evaluation metrics are respectively achieved by the proposed method over the best baseline methods. Furthermore, it also demonstrates the effectiveness of the proposed method in formulating targeted hazard control measures.

Suggested Citation

  • Liu, Jintao & Ji, Lin & Chen, Keyi & Li, Chenling & Duan, Huayu, 2025. "Railway operational hazard prediction and control based on knowledge graph embedding and topological analysis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001206
    DOI: 10.1016/j.ress.2025.110917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Huo, Xiaosen & Yin, Yuan & Jiao, Liudan & Zhang, Yu, 2024. "A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Zhang, Zhipeng & Lin, Chen-Yu, 2025. "Risk analysis of weather-related railroad accidents in the United States," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    7. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Iranitalab, Amirfarrokh & Khattak, Aemal, 2020. "Probabilistic classification of hazardous materials release events in train incidents and cargo tank truck crashes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Gholamizadeh, Kamran & Zarei, Esmaeil & Yazdi, Mohammad & Ramezanifar, Ehsan & Aliabadi, Mostafa Mirzaei, 2024. "A hybrid model for dynamic analysis of domino effects in chemical process industries," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Chen, Zhanfeng & Li, Xuyao & Wang, Wen & Li, Yan & Shi, Lei & Li, Yuxing, 2023. "Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Khameneh, Ramin Talebi & Barker, Kash & Ramirez-Marquez, Jose Emmanuel, 2025. "A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    13. Zheng, Qiaohong & Liu, Xinwang & Wang, Weizhong, 2023. "A consensus model-based risk matrix for human error factors risk analysis in medical devices by considering risk acceptability," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    14. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Qiaoqiao Ren & Min Xu & Bojian Zhou & Sai-Ho Chung, 2024. "Traffic Safety Assessment and Injury Severity Analysis for Undivided Two-Way Highway–Rail Grade Crossings," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    17. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    18. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Yongliang Deng & Ying Zhang & Zhenmin Yuan & Rita Yi Man Li & Tiantian Gu, 2023. "Analyzing Subway Operation Accidents Causations: Apriori Algorithm and Network Approaches," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    21. Jian Zhou & Weijian Zheng & Dali Wang & David W. Coit, 2024. "A resilient network recovery framework against cascading failures with deep graph learning," Journal of Risk and Reliability, , vol. 238(1), pages 193-203, February.
    22. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    23. Xin Wan & Yantong Zhang & Rubing Wang & Jingfeng Yuan & Mengliu Hu & Ruyu Li & Minye Wang & Ziyao Huang & Cheng Tu & Fujian Zhong & Wenjing Cui & Siew Ann Cheong, 2021. "Causation of Metro Operation Accidents in China: Calculation of Network Node Importance Based on DEMATEL and ISM," Complexity, Hindawi, vol. 2021, pages 1-16, November.
    24. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    25. Wang, Yangpeng & Li, Shuxiang & Lee, Kangkuen & Tam, Hwayaw & Qu, Yuanju & Huang, Jingyin & Chu, Xianghua, 2023. "Accident risk tensor-specific covariant model for railway accident risk assessment and prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    26. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    27. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    28. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    29. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    30. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    31. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    32. Kim, Do-Hoon, 2020. "Human factors influencing the ship operator's perceived risk in the last moment of collision encounter," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    33. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    34. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    35. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    36. Shi, Lingyuan & Yang, Xin & Chang, Ximing & Wu, Jianjun & Sun, Huijun, 2023. "An improved density peaks clustering algorithm based on k nearest neighbors and turning point for evaluating the severity of railway accidents," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yujie & Zhang, Zhipeng & Hu, Hao, 2025. "Risk propagation mechanisms in railway systems under extreme weather: A knowledge graph-based unsupervised causation chain approach," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Li, Haiwen & Qi, Lin & Wang, Mudan & Liu, Junying, 2025. "Operational resilience modeling of cross-border freight railway systems: A study of strategies to improve proactive and reactive capabilities," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    4. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Zhang, Zhipeng & Lin, Chen-Yu, 2025. "Risk analysis of weather-related railroad accidents in the United States," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    6. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Afkhami, Payam & Khayamim, Razieh & Li, Bokang & Borowska-Stefańska, Marta & Wiśniewski, Szymon & Fathollahi-Fard, Amir M. & Lau, Yui-yip & Dulebenets, Maxim A., 2025. "Resource allocation approaches for improving safety and operations at level crossings: State of the art, existing challenges, and future research needs," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    8. Kumi, Louis & Jeong, Jaewook & Jeong, Jaemin & Son, Jaehui & Mun, Hyeongjun, 2025. "Network-based safety risk analysis and interactive dashboard for root cause identification in construction accident management," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    9. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Xu, Jiamin & Mo, Siwen & Xu, Zixuan & Chen, Zhiwen & Yang, Chao & Jiang, Zhaohui, 2025. "Semi-supervised ISA: A novel industrial knowledge graph construction method enhanced by the fault log corpus analysis and semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    11. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Zhou, Jian-Lan & Zhou, Ya-Lun & Xiao, Ren-Bin, 2025. "A large-scale group SLIM considering expert credibility under social network to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    16. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Chen, Fei, 2025. "Risk assessment of main accident causes at highway-rail grade crossings," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    18. Li, Haoqian & Wang, Yong & Zeng, Jing & Li, Fansong & Yang, Zhenhuan & Mei, Guiming & Ye, Yunguang, 2024. "Virtual point tracking method for online detection of relative wheel-rail displacement of railway vehicles," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    19. Wen, He & Khan, Faisal & AbouRizk, Simaan & Fu, Gui, 2024. "Understanding of causality and its mathematical representation in accident modeling," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Cao, Yuhao & Iulia, Manole & Majumdar, Arnab & Feng, Yinwei & Xin, Xuri & Wang, Xinjian & Wang, Huanxin & Yang, Zaili, 2025. "Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.