IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002229.html
   My bibliography  Save this article

Predicting maritime accident risk using Automated Machine Learning

Author

Listed:
  • Munim, Ziaul Haque
  • Sørli, Michael André
  • Kim, Hyungju
  • Alon, Ilan

Abstract

Machine learning (ML), particularly, Automated machine learning (AutoML) offers a range of possibilities for analysing large volumes of historical maritime accidents data with advanced algorithms for integrating predictive analytics in operational and policy decision-making for improving maritime safety. This study explores historical data of maritime accidents in Norwegian waters over 40 years. The data has been utilised for analysing five major maritime accident categories: grounding, contact damage, fire or explosion, collision, and heavy weather damage. A total of 29 classification ML algorithms were trained, and the Light Gradient Boosted Trees Classifier was found to be the best-performing with the highest predictive accuracy. The three most impactful factors for accident risk are the category of navigation waters, phase of operation, and gross tonnage of the vessel. Based on the feature effect results, vessels sailing in narrow coastal waters, in the along-the-way operational phase, and fishing vessels are highly vulnerable to grounding relative to other types of accidents. The results can be used as input for the entire procedure of risk analysis, from hazard identification to quantification of accident consequences, and the best-performing ML algorithm can be utilized in developing a decision support system for real-time maritime accident risk assessment.

Suggested Citation

  • Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002229
    DOI: 10.1016/j.ress.2024.110148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
    2. Jia-ni Zhao & Jing Lv, 2016. "Comparing prediction methods for maritime accidents," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(8), pages 813-825, November.
    3. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    4. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    7. Guo, Kai & Zhang, Limao, 2022. "Adaptive multi-objective optimization for emergency evacuation at metro stations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    9. Xu, Zhaoyi & Saleh, Joseph Homer & Subagia, Rachmat, 2020. "Machine learning for helicopter accident analysis using supervised classification: Inference, prediction, and implications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Lutz Kretschmann, 2020. "Leading indicators and maritime safety: predicting future risk with a machine learning approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-22, December.
    11. Fan, Shiqi & Yang, Zaili, 2023. "Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Meizhi Jiang & Jing Lu & Zaili Yang & Jing Li, 2020. "Risk analysis of maritime accidents along the main route of the Maritime Silk Road: a Bayesian network approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(6), pages 815-832, August.
    13. Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Liangxia Zhong & Jiaxin Wu & Yiqing Wen & Bingjie Yang & Manel Grifoll & Yunping Hu & Pengjun Zheng, 2023. "Analysis of Factors Affecting the Effectiveness of Oil Spill Clean-Up: A Bayesian Network Approach," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    5. Kandel, Rajesh & Baroud, Hiba, 2024. "A data-driven risk assessment of Arctic maritime incidents: Using machine learning to predict incident types and identify risk factors," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Lan, He & Ma, Xiaoxue & Ma, Laihao & Qiao, Weiliang, 2023. "Pattern investigation of total loss maritime accidents based on association rule mining," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    8. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Li, Baode & Lu, Jing & Li, Jing & Zhu, Xuebin & Huang, Chuan & Su, Wan, 2022. "Scenario evolutionary analysis for maritime emergencies using an ensemble belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Çakır, Erkan & Fışkın, Remzi & Sevgili, Coşkan, 2021. "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    14. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    15. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    16. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.