IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002273.html
   My bibliography  Save this article

Probabilistic analysis of ship-bridge allisions when designing bridges

Author

Listed:
  • Hörteborn, Axel
  • Ringsberg, Jonas W.
  • Lundbäck, Olov
  • Mao, Wengang

Abstract

The advances in civil engineering with novel bridge designs between islands and across fjords with long spans, increasing ship traffic density and larger ships in coastal areas, have resulted in an increased frequency of ship-bridge allision accidents worldwide. It is thus essential to have reliable models and methods for engineers to create safe designs of these new bridges to simulate and analyse early pro-active mitigation measures. This study presents a new ship traffic allision probabilistic simulation mid fidelity model (STAPS), which includes a ship's manoeuvrability and motion physics and uses the Monte Carlo simulation method in the probabilistic calculations. It is compared with the low fidelity model IWRAP Mk2, which is used to analyse the risk of ship allisions with structures. Two case studies with ship-allision scenarios are presented to compare how the model fidelity levels of STAPS and IWRAP Mk2 affect the calculated probability levels of ship-bridge allision events. On a general level, the results show that IWRAP Mk2 overestimates the accident probability, for example IWRAP Mk2 predicts a 4.5 times higher probability of allisions compared to STAPS in the base case, and that the failure's duration and route layouts significantly influence both models. The study concludes that IWRAP Mk2 is preferred in the early phase of bridge design and STAPS is preferred in later stages.

Suggested Citation

  • Hörteborn, Axel & Ringsberg, Jonas W. & Lundbäck, Olov & Mao, Wengang, 2025. "Probabilistic analysis of ship-bridge allisions when designing bridges," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002273
    DOI: 10.1016/j.ress.2025.111026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.