IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipbs0951832025000481.html
   My bibliography  Save this article

Maritime Near-Miss prediction framework and model interpretation analysis method based on Transformer neural network model with multi-task classification variables

Author

Listed:
  • Chen, Pengxv
  • Zhang, Anmin
  • Zhang, Shenwen
  • Dong, Taoning
  • Zeng, Xi
  • Chen, Shuai
  • Shi, Peiru
  • Wong, Yiik Diew
  • Zhou, Qingji

Abstract

The prediction and analysis of Maritime Near-Miss incidents are crucial for enhancing safety protocols and accidents. In this study, a Multi-task classification variant of the Transformer neural network model is presented, designed to predict and interpret Maritime Near-Miss data. Incident reports were collected and analyzed using maritime open source intelligence, and a multi-task model based on the Transformer neural network was developed. A framework for training structured and unstructured data to predict incident risk levels and the necessity to activate the Stop Work mechanism was built. The model incorporates BERT text classification and Multi-label synthesis minority oversampling techniques to improve feature representation and address class imbalance. Dynamic weights were used to balance the learning of the two tasks during training. Experimental results show excellent performance in both risk assessment and stop work prediction tasks. The model was interpreted using feature maps and game theory, providing a new tool for maritime safety management and offering valuable insights for risk assessment and decision-making.

Suggested Citation

  • Chen, Pengxv & Zhang, Anmin & Zhang, Shenwen & Dong, Taoning & Zeng, Xi & Chen, Shuai & Shi, Peiru & Wong, Yiik Diew & Zhou, Qingji, 2025. "Maritime Near-Miss prediction framework and model interpretation analysis method based on Transformer neural network model with multi-task classification variables," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000481
    DOI: 10.1016/j.ress.2025.110845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.