IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002546.html
   My bibliography  Save this article

Virtual-reality-generated-data-driven Bayesian networks for risk analysis

Author

Listed:
  • Meng, Huixing
  • Zhao, Shijun
  • Song, Wenjuan
  • Hu, Mengqian

Abstract

Risk analysis is crucial to the risk control of major accidents. Therefore, the risk analysis of complex systems has attracted increasing attention from academia and industry. Data-driven Bayesian network (BN) models have proved to be useful for risk analysis in complex systems. Nevertheless, insufficient data remains a challenge for risk analysis. In this paper, we propose a method of virtual reality (VR)-generated data aiming to provide a solution to generate data for risk analysis. To demonstrate the feasibility of VR-generated data applied to data-driven risk analysis, we proposed the following methodology on the example of an emergency response system for deepwater blowout (i.e., a spilled oil collection system). Firstly, a VR model of the spilled oil collection system is established. Secondly, required data is generated from the VR system for the risk analysis of emergency operations. Eventually, the data-driven BN for risk analysis is constructed based on VR-generated data. The results show that VR-generated data can support risk analysis in the presence of limited data.

Suggested Citation

  • Meng, Huixing & Zhao, Shijun & Song, Wenjuan & Hu, Mengqian, 2025. "Virtual-reality-generated-data-driven Bayesian networks for risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002546
    DOI: 10.1016/j.ress.2025.111053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
    2. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Wang, Chenyushu & Cai, Baoping & Shao, Xiaoyan & Zhao, Liqian & Sui, Zhongfei & Liu, Keyang & Khan, Javed Akbar & Gao, Lei, 2023. "Dynamic risk assessment methodology of operation process for deepwater oil and gas equipment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Meng, Huixing & Hu, Mengqian & Kong, Ziyan & Niu, Yiming & Liang, Jiali & Nie, Zhenyu & Xing, Jinduo, 2024. "Risk analysis of lithium-ion battery accidents based on physics-informed data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    7. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Meng, Huixing & Hu, Mengqian & Kong, Ziyan & Niu, Yiming & Liang, Jiali & Nie, Zhenyu & Xing, Jinduo, 2024. "Risk analysis of lithium-ion battery accidents based on physics-informed data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Chen, Pengxv & Zhang, Anmin & Zhang, Shenwen & Dong, Taoning & Zeng, Xi & Chen, Shuai & Shi, Peiru & Wong, Yiik Diew & Zhou, Qingji, 2025. "Maritime Near-Miss prediction framework and model interpretation analysis method based on Transformer neural network model with multi-task classification variables," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    8. Cao, Yuhao & Iulia, Manole & Majumdar, Arnab & Feng, Yinwei & Xin, Xuri & Wang, Xinjian & Wang, Huanxin & Yang, Zaili, 2025. "Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    9. Wang, Ruihan & Zhang, Mingyang & Gong, Fuzhong & Wang, Shaohan & Yan, Ran, 2025. "Improving port state control through a transfer learning-enhanced XGBoost model," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    11. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    12. Karimi Dehkordi, Mohammadreza & Sattari, Fereshteh & Lefsrud, Lianne, 2025. "Creating an incident investigation framework for a complex socio-technical system: Application of multi-label text classification and Bayesian network structure learning," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    13. Liu, Guanyi & Liu, Shifeng & Li, Xuewei & Li, Xueyan & Gong, Daqing, 2025. "Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    14. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Fu, Shanshan & Tang, Qinya & Zhang, Mingyang & Han, Bing & Wu, Zhongdai & Mao, Wengang, 2025. "A data-driven framework for risk and resilience analysis in maritime transportation systems: A case study of domino effect accidents in arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Woloszyk, Krzysztof & Goerlandt, Floris & Montewka, Jakub, 2024. "A framework to analyse the probability of accidental hull girder failure considering advanced corrosion degradation for risk-based ship design," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Iaiani, Matteo & Fazari, Giuseppe & Tugnoli, Alessandro & Cozzani, Valerio, 2025. "Identification of reference security scenarios from past event datasets by Bayesian Network analysis," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    19. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Qiao, Weiliang & Huang, Enze & Zhang, Meng & Ma, Xiaoxue & Liu, Dong, 2025. "Risk influencing factors on the consequence of waterborne transportation accidents in China (2013–2023) based on data-driven machine learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.