IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002509.html
   My bibliography  Save this article

A data-driven framework for risk and resilience analysis in maritime transportation systems: A case study of domino effect accidents in arctic waters

Author

Listed:
  • Fu, Shanshan
  • Tang, Qinya
  • Zhang, Mingyang
  • Han, Bing
  • Wu, Zhongdai
  • Mao, Wengang

Abstract

Resilience is a complex concept that extends beyond risk, including the ability to absorb risks from external disturbances to maintain an acceptable level of safety. In the context of maritime transportation systems (MTS), resilience can be understood as a ship's ability to withstand disasters and ensure safe navigation in the face of unexpected incidents. This study proposes a data-driven framework for the quantitative analysis of risk and resilience in MTS, considering the temporal trends and domino effects of maritime accidents. The first step involves data preparation, which includes the collection, processing, and storage of global maritime accident data from the Lloyd's List Intelligence database spanning from 2014 to 2023. Next, an analysis of evolution trends is conducted to explore temporal trends and domino effects, focusing on the severity and pollution of maritime accidents. Arctic waters, known for their typical domino effects in maritime accidents, are chosen as a case study to illustrate the proposed risk and resilience analysis approach by considering the absorptive capacity in the evolution of maritime accidents. Furthermore, proactive and reactive risk control options are suggested for critical domino accident scenarios in Arctic waters to provide targeted recommendations for managing risks in Arctic shipping.

Suggested Citation

  • Fu, Shanshan & Tang, Qinya & Zhang, Mingyang & Han, Bing & Wu, Zhongdai & Mao, Wengang, 2025. "A data-driven framework for risk and resilience analysis in maritime transportation systems: A case study of domino effect accidents in arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002509
    DOI: 10.1016/j.ress.2025.111049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    2. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Provan, David J. & Woods, David D. & Dekker, Sidney W.A. & Rae, Andrew J., 2020. "Safety II professionals: How resilience engineering can transform safety practice," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Sungki Kim & Sanggyun Choi & Chanho Kim, 2021. "The Framework for Measuring Port Resilience in Korean Port Case," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    5. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Xiaoxue Ma & Qun Zhou & Yang Liu & Yu Liu & Weiliang Qiao, 2021. "Security of the Arctic route from the resilience perspective: the ideal state, influencing factors, and evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(6), pages 846-859, August.
    8. Berle, Øyvind & Asbjørnslett, Bjørn Egil & Rice, James B., 2011. "Formal Vulnerability Assessment of a maritime transportation system," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 696-705.
    9. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    10. Mayada Omer & Ali Mostashari & Roshanak Nilchiani & Mo Mansouri, 2012. "A framework for assessing resiliency of maritime transportation systems," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(7), pages 685-703, December.
    11. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    12. Zhang, Chi & Zhang, Di & Zhang, Mingyang & Lang, Xiao & Mao, Wengang, 2020. "An integrated risk assessment model for safe Arctic navigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 101-114.
    13. Kaneko, Fujio & Yuzui, Tomohiro, 2023. "Novel method of dynamic event tree keeping the number of simulations in risk analysis small," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Fu, Shanshan & Zhang, Yue & Zhang, Mingyang & Han, Bing & Wu, Zhongdai, 2023. "An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    15. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    16. Shihan Du & Huining Zhang & You Kong, 2023. "Sustainability Implications of the Arctic Shipping Route for Shanghai Port Logistics in the Post-Pandemic Era," Sustainability, MDPI, vol. 15(22), pages 1-29, November.
    17. Wang, Likun & Huang, Ruiling & Shi, Wenming & Zhang, Caiyun, 2021. "Domino effect in marine accidents: Evidence from temporal association rules," Transport Policy, Elsevier, vol. 103(C), pages 236-244.
    18. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    19. Roozbeh Panahi & Mawuli Afenyo & Adolf K.Y. Ng, 2023. "Developing a resilience index for safer and more resilient arctic shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 50(7), pages 861-875, October.
    20. Khan, Bushra & Khan, Faisal & Veitch, Brian & Yang, Ming, 2018. "An operational risk analysis tool to analyze marine transportation in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 485-502.
    21. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    22. Liu, Yang & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao & Han, Bing, 2024. "A novel methodology to model disruption propagation for resilient maritime transportation systems–a case study of the Arctic maritime transportation system," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    23. Yang Liu & Xiaoxue Ma & Weiliang Qiao & Bing Han, 2024. "A methodology to model the evolution of system resilience for Arctic shipping from the perspective of complexity," Maritime Policy & Management, Taylor & Francis Journals, vol. 51(5), pages 867-882, July.
    24. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    25. Xu, Sheng & Kim, Ekaterina & Haugen, Stein & Zhang, Mingyang, 2022. "A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    26. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    27. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shenping & Fang, Cuiwen & Wu, Jianjun & Fan, Cunlong & Zhang, Xinxin & Yang, Xue & Han, Bing, 2025. "Enhanced risk assessment framework for complex maritime traffic systems via data driven: A case study of ship navigation in Arctic," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Cao, Yuhao & Iulia, Manole & Majumdar, Arnab & Feng, Yinwei & Xin, Xuri & Wang, Xinjian & Wang, Huanxin & Yang, Zaili, 2025. "Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    4. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    6. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    7. Liu, Guanyi & Liu, Shifeng & Li, Xuewei & Li, Xueyan & Gong, Daqing, 2025. "Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    8. Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Chen, Tianyi & Wang, Hua & Cai, Yutong & Liang, Maohan & Meng, Qiang, 2025. "Exploring key factors for long-term vessel incident risk prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    11. Tamburini, Federica & Iaiani, Matteo & Cozzani, Valerio, 2025. "Analysis of system resilience in escalation scenarios involving LH2 bunkering operations," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    12. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Kandel, Rajesh & Baroud, Hiba, 2024. "A data-driven risk assessment of Arctic maritime incidents: Using machine learning to predict incident types and identify risk factors," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    17. Sungki Kim & Sanggyun Choi & Chanho Kim, 2021. "The Framework for Measuring Port Resilience in Korean Port Case," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    18. Meng, Huixing & Hu, Mengqian & Kong, Ziyan & Niu, Yiming & Liang, Jiali & Nie, Zhenyu & Xing, Jinduo, 2024. "Risk analysis of lithium-ion battery accidents based on physics-informed data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.