IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001942.html
   My bibliography  Save this article

Enhanced risk assessment framework for complex maritime traffic systems via data driven: A case study of ship navigation in Arctic

Author

Listed:
  • Hu, Shenping
  • Fang, Cuiwen
  • Wu, Jianjun
  • Fan, Cunlong
  • Zhang, Xinxin
  • Yang, Xue
  • Han, Bing

Abstract

The era of big data has been characterized by an increasing diversity of information and a deeper application of system safety. In this context, this study proposes an enhanced risk assessment (ERA) framework to estimate traffic risk from massive data obtained in complex maritime traffic systems. The ERA framework adopts a 4R model that includes risk perception, risk cognition, risk reasoning, and risk control. The ERA framework integrates the Systems Theoretic Accident Model and Process and Stochastic Petri Nets to analyze the ship traffic process and develop risk control schemes. The feasibility of the proposed framework is demonstrated by a case study in Arctic waters. The results indicate that ice concentration represents a key factor for ship traffic in Arctic waters and that the risk control scheme type is related to the ice resistance level of ships. Accordingly, for ships with low ice resistance or no ice-class ships, the traffic risk is high when they are passing through the East Siberian, Laptev, Kara Sea, and the Vilkitskogo Strait, and icebreakers are required in July and October. In contrast, for ships with a higher ice resistance, regular traffic is generally possible for the East Siberian and Laptev Seas.

Suggested Citation

  • Hu, Shenping & Fang, Cuiwen & Wu, Jianjun & Fan, Cunlong & Zhang, Xinxin & Yang, Xue & Han, Bing, 2025. "Enhanced risk assessment framework for complex maritime traffic systems via data driven: A case study of ship navigation in Arctic," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001942
    DOI: 10.1016/j.ress.2025.110991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    2. Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation—Part I: Transport cask damage probability," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 124-135.
    3. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Hu, Shenping & Fang, Quangen & Xia, Haibo & Xi, Yongtao, 2007. "Formal safety assessment based on relative risks model in ship navigation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 369-377.
    5. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    6. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Zhang, Chi & Zhang, Di & Zhang, Mingyang & Lang, Xiao & Mao, Wengang, 2020. "An integrated risk assessment model for safe Arctic navigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 101-114.
    9. Taleb-Berrouane, Mohammed & Khan, Faisal & Amyotte, Paul, 2020. "Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Fu, Shanshan & Zhang, Yue & Zhang, Mingyang & Han, Bing & Wu, Zhongdai, 2023. "An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    11. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Kandel, Rajesh & Baroud, Hiba, 2024. "A data-driven risk assessment of Arctic maritime incidents: Using machine learning to predict incident types and identify risk factors," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Nývlt, Ondřej & Haugen, Stein & Ferkl, Lukáš, 2015. "Complex accident scenarios modelled and analysed by Stochastic Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 539-555.
    16. Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 136-149.
    17. Khan, Bushra & Khan, Faisal & Veitch, Brian & Yang, Ming, 2018. "An operational risk analysis tool to analyze marine transportation in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 485-502.
    18. Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
    19. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Xu, Sheng & Kim, Ekaterina & Haugen, Stein & Zhang, Mingyang, 2022. "A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    21. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    22. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    23. Montewka, Jakub & Goerlandt, Floris & Kujala, Pentti, 2014. "On a systematic perspective on risk for formal safety assessment (FSA)," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 77-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Shanshan & Tang, Qinya & Zhang, Mingyang & Han, Bing & Wu, Zhongdai & Mao, Wengang, 2025. "A data-driven framework for risk and resilience analysis in maritime transportation systems: A case study of domino effect accidents in arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Bolbot, Victor & Bergström, Martin & Rahikainen, Marko & Valdez Banda, Osiris A., 2025. "Investigation into safety acceptance principles for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    3. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Qiao, Weiliang & Huang, Enze & Zhang, Meng & Ma, Xiaoxue & Liu, Dong, 2025. "Risk influencing factors on the consequence of waterborne transportation accidents in China (2013–2023) based on data-driven machine learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    5. Tao, Longlong & Chen, Liwei & Ge, Daochuan & Yao, Yuantao & Ruan, Fang & Wu, Jie & Yu, Jie, 2022. "An integrated probabilistic risk assessment methodology for maritime transportation of spent nuclear fuel based on event tree and hydrodynamic model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    6. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    7. Zhang, Mingyang & Taimuri, Ghalib & Zhang, Jinfen & Zhang, Di & Yan, Xinping & Kujala, Pentti & Hirdaris, Spyros, 2025. "Systems driven intelligent decision support methods for ship collision and grounding prevention: Present status, possible solutions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Cao, Yuhao & Iulia, Manole & Majumdar, Arnab & Feng, Yinwei & Xin, Xuri & Wang, Xinjian & Wang, Huanxin & Yang, Zaili, 2025. "Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    9. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Liu, Guanyi & Liu, Shifeng & Li, Xuewei & Li, Xueyan & Gong, Daqing, 2025. "Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    11. Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    14. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Cheng, Tingting & Veitch, Erik A. & Utne, Ingrid Bouwer & Ramos, Marilia A. & Mosleh, Ali & Alsos, Ole Andreas & Wu, Bing, 2024. "Analysis of human errors in human-autonomy collaboration in autonomous ships operations through shore control experimental data," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    18. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.