IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000328.html
   My bibliography  Save this article

Risk influencing factors on the consequence of waterborne transportation accidents in China (2013–2023) based on data-driven machine learning

Author

Listed:
  • Qiao, Weiliang
  • Huang, Enze
  • Zhang, Meng
  • Ma, Xiaoxue
  • Liu, Dong

Abstract

Early warning on the basis of RIFs data is widely considered as an effective way to prevent waterborne transportation accidents, and the performance of warning model is critical. To develop a warning model with good performance, in this study, a data-driven based comprehensive machine learning algorithm, namely BiLSTM-CNN-RF is proposed. The RIFs data used to train the proposed algorithm is extracted from the 1090 waterborne transportation accident investigation reports during 2013–2023 in China, the collected data is first pre-processed to establish the input sample set of the algorithms. Meanwhile the importance of RIFs is also quantitatively analyzed. The traditional machine learning algorithms, such as RF, SVM, MPL, and GRU, are also involved in this study to verify the performance of the proposed comprehensive algorithm. The RIFs data is then fed into these five machine learning algorithms, the prediction results of “Accident type†and “Accident grade†are used to examine their prediction performance. The results show that the performance of the proposed BiLSTM-CNN-RF algorithm is better than the four traditional machine learning algorithms, especially for prediction accuracy, and another superiority is the good applicability in case of small sample data volume.

Suggested Citation

  • Qiao, Weiliang & Huang, Enze & Zhang, Meng & Ma, Xiaoxue & Liu, Dong, 2025. "Risk influencing factors on the consequence of waterborne transportation accidents in China (2013–2023) based on data-driven machine learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000328
    DOI: 10.1016/j.ress.2025.110829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yinwei & Wang, Xinjian & Chen, Qilei & Yang, Zaili & Wang, Jin & Li, Huanhuan & Xia, Guoqing & Liu, Zhengjiang, 2024. "Prediction of the severity of marine accidents using improved machine learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Lan, He & Ma, Xiaoxue & Ma, Laihao & Qiao, Weiliang, 2023. "Pattern investigation of total loss maritime accidents based on association rule mining," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).
    7. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2024. "Testing equality of several distributions in separable metric spaces: A maximum mean discrepancy based approach," Journal of Econometrics, Elsevier, vol. 239(2).
    8. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    9. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Kandel, Rajesh & Baroud, Hiba, 2024. "A data-driven risk assessment of Arctic maritime incidents: Using machine learning to predict incident types and identify risk factors," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Yang, Ying & Liu, Yang & Li, Guorong & Zhang, Zekun & Liu, Yanbin, 2024. "Harnessing the power of Machine learning for AIS Data-Driven maritime Research: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    14. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    16. Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
    17. Andrew Rawson & Mario Brito, 2023. "A survey of the opportunities and challenges of supervised machine learning in maritime risk analysis," Transport Reviews, Taylor & Francis Journals, vol. 43(1), pages 108-130, January.
    18. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    21. Chen, Tianyi & Wang, Hua & Cai, Yutong & Liang, Maohan & Meng, Qiang, 2025. "Exploring key factors for long-term vessel incident risk prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hörteborn, Axel & Ringsberg, Jonas W. & Lundbäck, Olov & Mao, Wengang, 2025. "Probabilistic analysis of ship-bridge allisions when designing bridges," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Lu, Peng & Li, Yufei, 2025. "Agent-based fire evacuation model using social learning theory and intelligent optimization algorithms," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yuhao & Iulia, Manole & Majumdar, Arnab & Feng, Yinwei & Xin, Xuri & Wang, Xinjian & Wang, Huanxin & Yang, Zaili, 2025. "Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    2. Gan, Langxiong & Gao, Ziyi & Zhang, Xiyu & Xu, Yi & Liu, Ryan Wen & Xie, Cheng & Shu, Yaqing, 2025. "Graph neural networks enabled accident causation prediction for maritime vessel traffic," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    3. Chen, Pengxv & Zhang, Anmin & Zhang, Shenwen & Dong, Taoning & Zeng, Xi & Chen, Shuai & Shi, Peiru & Wong, Yiik Diew & Zhou, Qingji, 2025. "Maritime Near-Miss prediction framework and model interpretation analysis method based on Transformer neural network model with multi-task classification variables," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    4. Hörteborn, Axel & Ringsberg, Jonas W. & Lundbäck, Olov & Mao, Wengang, 2025. "Probabilistic analysis of ship-bridge allisions when designing bridges," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    5. Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Hu, Shenping & Fang, Cuiwen & Wu, Jianjun & Fan, Cunlong & Zhang, Xinxin & Yang, Xue & Han, Bing, 2025. "Enhanced risk assessment framework for complex maritime traffic systems via data driven: A case study of ship navigation in Arctic," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    9. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    11. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    12. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    15. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Guo, Mingyang & Chen, Miao & Yuan, Lihao & Zhang, Zhihui & Lv, Jia & Cai, Zhiyong, 2025. "Investigation of ship collision accident risk factors using BP-DEMATEL method based on HFACS-SCA," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    17. Bairami-Khankandi, Shahrokh & Bolbot, Victor & BahooToroody, Ahmad & Goerlandt, Floris, 2025. "A systems-theoretic approach using association rule mining and predictive Bayesian trend analysis to identify patterns in maritime accident causes," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    18. Deng, Wanyi & Ma, Xiaoxue & Qiao, Weiliang, 2024. "A novel methodology to quantify the impact of safety barriers on maritime operational risk based on a probabilistic network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Sezer, Sukru Ilke & Akyuz, Emre, 2024. "A conceptual risk modelling for cargo tank fire/explosion in chemical tanker by using Evidential Reasoning -SLIM and Bayesian belief network approach," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    20. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.