IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v180y2023ics1366554523003198.html
   My bibliography  Save this article

A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection

Author

Listed:
  • Yang, Zhisen
  • Wan, Chengpeng
  • Yu, Qing
  • Yin, Jingbo
  • Yang, Zaili

Abstract

Port state control (PSC) inspections are deemed as an effective way to detect substandard vessels and ensure maritime safety around the world. Despite great efforts on PSC in recent years, one challenge that still exists in today’s PSC inspection practice is that there lack relevant scheme or academic research focusing on the duration of vessel detention, which is of great importance to the inspection system. To assist port authorities in estimating detention duration and minimizing the existence of substandard vessels, this paper aims to develop a novel data-driven machine learning based model based on the inspection records collected within the jurisdiction of Paris MoU from January 2015 to March 2022. The model is trained via the incorporation of an Improved Tree Augmented Naïve (ITAN) learning approach and a maximum a posteriori probability (MAP) of Expectation Maximization (EM) approach for the first time within the context of PSC research, which could be used as a prediction tool to determine rational durations for detained vessels. Thorough analysis of the proposed model enables the identification of risk variables and deficiency types having significant effects leading to long duration of detention. Further, the research findings could reveal managerial suggestions and insights for port authorities to reduce the occurrence of substandard vessels via the inspection system, i.e., identify specific risk level of vessels and ensure a more-efficient vessel selection process; design specific instructions and rules to regulate risk variables and deficiencies with huge effect on a long duration of detention. This research will provide insightful reference for effectively improving vessel quality, inspection efficiency, and maritime safety.

Suggested Citation

  • Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003198
    DOI: 10.1016/j.tre.2023.103331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.