IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v176y2018icp174-186.html
   My bibliography  Save this article

Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports

Author

Listed:
  • Bye, Rolf J.
  • Aalberg, Asbjørn L.

Abstract

This paper presents the results of statistical analyses of maritime accidents data and AIS data from Norwegian waters, to identify conditions that are associated with navigation related accidents (groundings and collisions) and could be used as risk indicators. Vessels involved in accidents reported in the accident database of the Norwegian Maritime Directorate (NMA), have been traced in historical AIS records, and data related to each ship have been transformed into variables. These variables are related to the behavior of the ship in front of the accident (e.g. nautical miles sailed, hours in operations, number of port calls etc.), technical and organizational conditions (ship categories, flag state, age, gross tonnage, Paris MoU ratings etc.) and the area where the accident occurred (number of vessels in the area, port calls in the area, nautical miles in the area etc.). Both the AIS data and the data from the NMA accident database have first been analyzed using correspondence analysis (categorical variables), F-tests (continuous variables), and then combined in a multivariate logistic regression model with “navigation accidents†and “other accidents†as dependent variables. The model is a strong predictor for whether the accident is navigation-related or not. Specifically, some vessel types, less vessel length, poor visibility condition, and a flag of convenience increased this probability.

Suggested Citation

  • Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
  • Handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:174-186
    DOI: 10.1016/j.ress.2018.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017311924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. X. Li & J. Wonham, 1999. "Who is safe and who is at risk: a study of 20-year-record on accident total loss in different flags," Maritime Policy & Management, Taylor & Francis Journals, vol. 26(2), pages 137-144, April.
    2. Tony Alderton & Nik Winchester, 2002. "Flag states and safety: 1997-1999," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(2), pages 151-162, April.
    3. Yip, Tsz Leung, 2008. "Port traffic risks - A study of accidents in Hong Kong waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 921-931, September.
    4. Tzannatos, Ernestos & Kokotos, Dimitris, 2009. "Analysis of accidents in Greek shipping during the pre- and post-ISM period," Marine Policy, Elsevier, vol. 33(4), pages 679-684, July.
    5. Li, K. X., 1999. "The safety and quality of open registers and a new approach for classifying risky ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 35(2), pages 135-143, June.
    6. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    7. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    8. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    9. Carl Macrae, 2009. "Human factors at sea: common patterns of error in groundings and collisions," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(1), pages 21-38, February.
    10. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    5. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    6. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. Fan, Lixian & Luo, Meifeng & Yin, Jinbo, 2014. "Flag choice and Port State Control inspections—Empirical evidence using a simultaneous model," Transport Policy, Elsevier, vol. 35(C), pages 350-357.
    8. Valdez Banda, Osiris A. & Kannos, Sirpa & Goerlandt, Floris & van Gelder, Pieter H.A.J.M. & Bergström, Martin & Kujala, Pentti, 2019. "A systemic hazard analysis and management process for the concept design phase of an autonomous vessel," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
    10. Heij, C. & Knapp, S., 2018. "Predictive power of inspection outcomes for future shipping accidents," Econometric Institute Research Papers EI2018-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Yishu Zheng & Wayne K. Talley & Di Jin & ManWo Ng, 2016. "Crew injuries in container vessel accidents," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(5), pages 541-551, July.
    13. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    14. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    15. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    16. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    17. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Yin, Jingbo & Fan, Lixian & Li, Kevin X., 2018. "Second ship registry in flag choice mechanism: The implications for China in promoting a maritime cluster policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 152-165.
    20. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:174-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.