IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v209y2021ics0951832021000387.html
   My bibliography  Save this article

Investigation of tugboat accidents severity: An application of association rule mining algorithms

Author

Listed:
  • Çakır, Erkan
  • Fışkın, Remzi
  • Sevgili, CoÅŸkan

Abstract

This paper aims to investigate tugboat accidents using various association rule mining algorithms. A total of 477 tugboat accident records obtained from the Information Handling Services (IHS) Sea-Web database for the period of 2008–2017 were analysed. Apriori, Predictive Apriori and FP-Growth algorithms were employed to extract the association rules of the tugboat accidents dataset. The present study revealed that tugboats aged over 20 years are crucial indicators for serious accidents. Hull/machinery damage and collision type accidents, on the other hand, constitute more than half of the total tugboat accidents. Association rule mining also showed that four of the five rules for serious accidents are attributed to hull/machinery damage. The results of this study are thought to be beneficial for tugboat and ship operators, port management and public authorities regarding the awareness of the factors affecting tugboat accidents.

Suggested Citation

  • Çakır, Erkan & Fışkın, Remzi & Sevgili, CoÅŸkan, 2021. "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000387
    DOI: 10.1016/j.ress.2021.107470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne K. Talley & Di Jin & Hauke Kite-Powell, 2006. "Determinants of the severity of passenger vessel accidents," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(2), pages 173-186, May.
    2. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    3. Wayne K Talley, 2002. "Vessel Damage Cost Differentials: Bulk, Container and Tanker Accidents," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 4(4), pages 307-322, December.
    4. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    5. Pristrom, Sascha & Yang, Zaili & Wang, Jin & Yan, Xinping, 2016. "A novel flexible model for piracy and robbery assessment of merchant ship operations," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 196-211.
    6. Wayne K Talley, 1999. "Determinants of Ship Accident Seaworthiness," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 1(2), pages 1-14, December.
    7. Antão, Pedro & Guedes Soares, C., 2008. "Causal factors in accidents of high-speed craft and conventional ocean-going vessels," Reliability Engineering and System Safety, Elsevier, vol. 93(9), pages 1292-1304.
    8. Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
    9. Meizhi Jiang & Jing Lu & Zaili Yang & Jing Li, 2020. "Risk analysis of maritime accidents along the main route of the Maritime Silk Road: a Bayesian network approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(6), pages 815-832, August.
    10. Ozcan Arslan & Osman Turan, 2009. "Analytical investigation of marine casualties at the Strait of Istanbul with SWOT--AHP method," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(2), pages 131-145, April.
    11. R-H Lin, 2009. "Potential use of FP-growth algorithm for identifying competitive suppliers in SCM," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1135-1141, August.
    12. Jeon, Jeasu & Sohn, So Young, 2015. "Product failure pattern analysis from warranty data using association rule and Weibull regression analysis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 176-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan, He & Ma, Xiaoxue & Ma, Laihao & Qiao, Weiliang, 2023. "Pattern investigation of total loss maritime accidents based on association rule mining," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Fang Wang & Weijie Du & Hongxiang Feng & Yun Ye & Manel Grifoll & Guiyun Liu & Pengjun Zheng, 2023. "Identification of Risk Influential Factors for Fishing Vessel Accidents Using Claims Data from Fishery Mutual Insurance Association," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    4. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Li, Baode & Lu, Jing & Li, Jing & Zhu, Xuebin & Huang, Chuan & Su, Wan, 2022. "Scenario evolutionary analysis for maritime emergencies using an ensemble belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Shiqi Fan & Zaili Yang & Eduardo Blanco-Davis & Jinfen Zhang & Xinping Yan, 2020. "Analysis of maritime transport accidents using Bayesian networks," Journal of Risk and Reliability, , vol. 234(3), pages 439-454, June.
    4. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    7. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    8. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    9. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    12. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    15. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    16. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    18. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    19. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.