IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v255y2025ics095183202400718x.html
   My bibliography  Save this article

Risk analysis of weather-related railroad accidents in the United States

Author

Listed:
  • Zhang, Zhipeng
  • Lin, Chen-Yu

Abstract

Global climate change has led to more frequent extreme weather events in recent decades, and this has impacted critical infrastructure such as railway systems. Although train accidents caused by extreme weather events are not uncommon, the level of their risk is foreseen to rise to an unacceptable level. As a result, proper data collection and analysis for train accident related to extreme weather are pertinent to developing an effective railway climate change adaptation plan. This paper presents a comprehensive and quantitative analysis of weather-related railroad accidents in the United States. The analysis comprises time series, spatial, and causal elements to understand the temporal trends of weather-related railroad accidents, the predominant type of weather causes, and the effect of regional meteorological characteristics on them. The results showed that the likelihood of weather-related railroad accidents varies by meteorological regions and does not show a clear increasing or decreasing trend, but their above-average severity indicates opportunities to mitigate the risk in light of the projected increasing frequency. Results of this research contribute to better understanding of railway extreme weather risk and serve as a foundation for future research that addresses the effect of climate change on railroad system and develops proper railway climate change adaptation plans.

Suggested Citation

  • Zhang, Zhipeng & Lin, Chen-Yu, 2025. "Risk analysis of weather-related railroad accidents in the United States," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:reensy:v:255:y:2025:i:c:s095183202400718x
    DOI: 10.1016/j.ress.2024.110647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400718X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Cheng & Yin, Weihao & Liu, Xueting & Huang, Yanwen & Lu, Dagang & Zhang, Jie, 2024. "Tornado-induced risk analysis of railway system considering the correlation of parameters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Sun, Xiaojun & Lin, Sheng & Feng, Ding & Zhang, Qiang, 2024. "Post-disaster repair optimization method for traction power supply system of electrified railways based on train operation loss," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Brazil, William & White, Arthur & Nogal, Maria & Caulfield, Brian & O'Connor, Alan & Morton, Craig, 2017. "Weather and rail delays: Analysis of metropolitan rail in Dublin," Journal of Transport Geography, Elsevier, vol. 59(C), pages 69-76.
    4. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Johanna Ludvigsen & Ronny Klæboe, 2014. "Extreme weather impacts on freight railways in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 767-787, January.
    7. Long, Fenjie & Zheng, Longfei & Song, Zhida, 2018. "High-speed rail and urban expansion: An empirical study using a time series of nighttime light satellite data in China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 106-118.
    8. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Zhang, Hui & Xu, Min & Ouyang, Min, 2024. "A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.
    12. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Bešinović, Nikola & Ferrari Nassar, Raphael & Szymula, Christopher, 2022. "Resilience assessment of railway networks: Combining infrastructure restoration and transport management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    14. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    16. Terje Aven & Ortwin Renn, 2009. "On risk defined as an event where the outcome is uncertain," Journal of Risk Research, Taylor & Francis Journals, vol. 12(1), pages 1-11, January.
    17. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Rob Lamb & Paige Garside & Raghav Pant & Jim W. Hall, 2019. "A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2457-2478, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Vojtěch Nezval & Richard Andrášik & Michal Bíl, 2024. "Impact of storms on rail transport: a case study from Czechia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3189-3212, March.
    3. Abushaega, Mastoor M. & González, Andrés D. & Moshebah, Osamah Y., 2024. "A fairness-based multi-objective distribution and restoration model for enhanced resilience of supply chain transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Zhang, Hui & Xu, Min & Ouyang, Min, 2024. "A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Shi, Lingyuan & Yang, Xin & Chang, Ximing & Wu, Jianjun & Sun, Huijun, 2023. "An improved density peaks clustering algorithm based on k nearest neighbors and turning point for evaluating the severity of railway accidents," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Wang, Jian & Liu, Huiyuan & Gao, Shibin & Yu, Long & Liu, Xingyang & Zhang, Dongkai & Kou, Lei, 2024. "Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Tan, Qiong & Fu, Ming & Wang, Zhengxing & Yuan, Hongyong & Sun, Jinhua, 2024. "A real-time early warning classification method for natural gas leakage based on random forest," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    13. Fan, Xiaomin & Xu, Yingzhi, 2023. "Does high-speed railway promote urban innovation? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    14. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Alday, Sandra Seno, 2022. "Regional integration and the regional risk paradox," European Management Journal, Elsevier, vol. 40(5), pages 793-808.
    16. Dengsheng Wu & Xiaoqian Zhu & Jie Wan & Chunbing Bao & Jianping Li, 2019. "A Multiobjective Optimization Approach for Selecting Risk Response Strategies of Software Project: From the Perspective of Risk Correlations," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 339-364, January.
    17. Aven, Terje, 2010. "Some reflections on uncertainty analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 195-201.
    18. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    19. Neelke Doorn, 2015. "The Blind Spot in Risk Ethics: Managing Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 354-360, March.
    20. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s095183202400718x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.