Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2020.106931
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
- Gehl, Pierre & Cavalieri, Francesco & Franchin, Paolo, 2018. "Approximate Bayesian network formulation for the rapid loss assessment of real-world infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 80-93.
- Sabri Boughorbel & Fethi Jarray & Mohammed El-Anbari, 2017. "Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-17, June.
- Kabir, Elnaz & Guikema, Seth & Kane, Brian, 2018. "Statistical modeling of tree failures during storms," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 68-79.
- Rachman, Andika & Ratnayake, R.M. Chandima, 2019. "Machine learning approach for risk-based inspection screening assessment," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 518-532.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Cheng, Jin & Wang, Jian & Wu, Xuezhou & Wang, Shuo, 2019. "An improved polynomial-based nonlinear variable importance measure and its application to degradation assessment for high-voltage transformer under imbalance data," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 175-191.
- Mirza Rizwan Sajid & Bader A. Almehmadi & Waqas Sami & Mansour K. Alzahrani & Noryanti Muhammad & Christophe Chesneau & Asif Hanif & Arshad Ali Khan & Ahmad Shahbaz, 2021. "Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
- Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
- Javid, Y., 2025. "Efficient risk-based inspection framework: Balancing safety and budgetary constraints," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Matteo Rucco & Giovanna Viticchi & Lorenzo Falsetti, 2020. "Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery (FLAIR) by Topological Interpretable Machine Learning," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
- Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
- Mohamed Zine & Fouzi Harrou & Mohammed Terbeche & Mohammed Bellahcene & Abdelkader Dairi & Ying Sun, 2023. "E-Learning Readiness Assessment Using Machine Learning Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
- Jing, Qi & Yu, Lin & Lan, Fengyi & Li, Yuntao, 2024. "Quantitative assessment rules and models for dynamic disaster risk in high-density gas gathering stations: Practical application in a largest CBM gathering station," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Campari, Alessandro & Ustolin, Federico & Alvaro, Antonio & Paltrinieri, Nicola, 2024. "Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2021. "Cohort Shapley value for algorithmic fairness," Papers 2105.07168, arXiv.org.
- Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
- Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
- Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.
- Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
- Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2022. "Variable importance without impossible data," Papers 2205.15750, arXiv.org, revised Apr 2023.
- Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
- Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019308580. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/reensy/v200y2020ics0951832019308580.html