IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i4d10.1007_s11069-023-06321-2.html
   My bibliography  Save this article

Impact of storms on rail transport: a case study from Czechia

Author

Listed:
  • Vojtěch Nezval

    (CDV – Transport Research Centre)

  • Richard Andrášik

    (CDV – Transport Research Centre)

  • Michal Bíl

    (CDV – Transport Research Centre)

Abstract

Storms (thunderstorms or windstorms) are common meteorological phenomena in Europe. They produce rain, lightning, strong winds or hail and are capable of causing serious failures in rail transport. We identified 14,786 incidents associated with storms, which took place on the Czech rail network between 2002 and 2021. This represented 5% of all reported rail incidents in Czechia over the monitored period. Using the exact binomial test and a grid covering each combination of month and hour, we found that these incidents were concentrated between May and August in the early morning and afternoon hours. Most of the rail problems were concentrated on only a small number of days, indicating the significant impact of severe storms. The incidents (82%) were associated with rail device failures and/or power outages, such as malfunctions of switches, signals or communication and safety devices. In addition, tree falls on rail infrastructure were also common. The total train delay time exceeded 3917 h, and in some cases rail traffic was even completely disrupted. Based on the findings, which provide unique insight into the impacts of storms on railways, mitigation measures are discussed. This is particularly important given climate change, which may lead to an increased likelihood of severe weather and associated damage in the future.

Suggested Citation

  • Vojtěch Nezval & Richard Andrášik & Michal Bíl, 2024. "Impact of storms on rail transport: a case study from Czechia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3189-3212, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06321-2
    DOI: 10.1007/s11069-023-06321-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06321-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06321-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claus Doll & Christian Trinks & Norbert Sedlacek & Verena Pelikan & Tina Comes & Frank Schultmann, 2014. "Adapting rail and road networks to weather extremes: case studies for southern Germany and Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 63-85, May.
    2. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
    3. Brazil, William & White, Arthur & Nogal, Maria & Caulfield, Brian & O'Connor, Alan & Morton, Craig, 2017. "Weather and rail delays: Analysis of metropolitan rail in Dublin," Journal of Transport Geography, Elsevier, vol. 59(C), pages 69-76.
    4. Kabir, Elnaz & Guikema, Seth & Kane, Brian, 2018. "Statistical modeling of tree failures during storms," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 68-79.
    5. Rolf Nyberg & Magnus Johansson, 2013. "Indicators of road network vulnerability to storm-felled trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 185-199, October.
    6. Johanna Ludvigsen & Ronny Klæboe, 2014. "Extreme weather impacts on freight railways in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 767-787, January.
    7. Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.
    8. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    9. Sonja Szymczak & Frederick Bott & Pierre Babeck & Annett Frick & Benjamin Stöckigt & Kathrin Wagner, 2022. "Estimating the hazard of tree fall along railway lines: a new GIS tool," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2237-2258, July.
    10. Andrea Vajda & Heikki Tuomenvirta & Ilkka Juga & Pertti Nurmi & Pauli Jokinen & Jenni Rauhala, 2014. "Severe weather affecting European transport systems: the identification, classification and frequencies of events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 169-188, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonja Szymczak & Frederick Bott & Pierre Babeck & Annett Frick & Benjamin Stöckigt & Kathrin Wagner, 2022. "Estimating the hazard of tree fall along railway lines: a new GIS tool," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2237-2258, July.
    2. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    3. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    4. Boura, Georgia & Ferguson, Neil S., 2024. "Incorporating geographic interdependencies into the resilience assessment of multimodal public transport networks," Journal of Transport Geography, Elsevier, vol. 118(C).
    5. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    6. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    7. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    8. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    9. Qiyao Han & Greg Keeffe, 2019. "Mapping the Flow of Forest Migration through the City under Climate Change," Urban Planning, Cogitatio Press, vol. 4(1), pages 139-151.
    10. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    11. Sakdirat Kaewunruen & Yi-Hsuan Lin & Harris Rosli & Chen-Wei Fan & Jan Pesta & François Fohl, 2024. "Digitalisation of Railway Tunnels for Climate Change Adaptation and Enhanced Asset Circularity," Sustainability, MDPI, vol. 16(22), pages 1-20, November.
    12. Nogueira Terra, Talita & Ferreira dos Santos, Rozely, 2012. "Measuring cumulative effects in a fragmented landscape," Ecological Modelling, Elsevier, vol. 228(C), pages 89-95.
    13. Kizito, Rodney & Liu, Zeyu & Li, Xueping & Sun, Kai, 2022. "Multi-stage stochastic optimization of islanded utility-microgrids design after natural disasters," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Burdziej Jan, 2019. "Using hexagonal grids and network analysis for spatial accessibility assessment in urban environments – a case study of public amenities in Toruń," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 23(2), pages 99-110, June.
    15. Abbie Judice & Jason Gordon & Jesse Abrams & Kris Irwin, 2021. "Community Perceptions of Tree Risk and Management," Land, MDPI, vol. 10(10), pages 1-19, October.
    16. Tiong, Kah Yong & Ma, Zhenliang & Palmqvist, Carl-William, 2023. "Analyzing factors contributing to real-time train arrival delays using seemingly unrelated regression models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    17. Fikar, Christian & Hirsch, Patrick & Posset, Martin & Gronalt, Manfred, 2016. "Impact of transalpine rail network disruptions: A study of the Brenner Pass," Journal of Transport Geography, Elsevier, vol. 54(C), pages 122-131.
    18. Pasquale De Toro & Enrico Formato & Nicola Fierro, 2023. "Sustainability Assessments of Peri-Urban Areas: An Evaluation Model for the Territorialization of the Sustainable Development Goals," Land, MDPI, vol. 12(7), pages 1-32, July.
    19. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    20. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06321-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.